Scattering theory from microscopic first principles

被引:17
作者
Dürr, D
Goldstein, S
Teufel, S
Zanghì, N
机构
[1] Rutgers State Univ, Dept Math, Hill Ctr, Piscataway, NJ 08854 USA
[2] Univ Munich, Inst Math, D-80333 Munich, Germany
[3] Tech Univ Munich, Zentrum Math, D-80290 Munich, Germany
[4] Univ Genoa, Dipartimento Fis, Sez Genova, Ist Nazl Fis Nucl, I-16146 Genoa, Italy
来源
PHYSICA A | 2000年 / 279卷 / 1-4期
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0378-4371(99)00523-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We sketch a derivation of abstract scattering theory from the microscopic first principles defined by Bohmian mechanics. We emphasize the importance of the flux-across-surfaces theorem for the derivation, and of randomness in the impact parameter of the initial wave function even for an, inevitably inadequate, orthodox derivation. (C) 2000 Elsevier Science B.V. AII rights reserved.
引用
收藏
页码:416 / 431
页数:16
相关论文
共 25 条
[1]   Flux and scattering into cones for long range and singular potentials [J].
Amrein, WO ;
Pearson, DB .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (15) :5361-5379
[2]  
Amrein WO, 1997, HELV PHYS ACTA, V70, P1
[3]   ON THE GLOBAL EXISTENCE OF BOHMIAN MECHANICS [J].
BERNDL, K ;
DURR, D ;
GOLDSTEIN, S ;
PERUZZI, G ;
ZANGHI, N .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 173 (03) :647-673
[4]  
BOHM D, 1952, PHYS REV, V85, P166, DOI 10.1103/PhysRev.85.166
[5]   Quantum mechanics in impact processes [J].
Born, M .
ZEITSCHRIFT FUR PHYSIK, 1926, 38 (11/12) :803-840
[6]  
COMBES JM, 1975, PHYS REV D, V11, P366, DOI 10.1103/PhysRevD.11.366
[7]   On the flux-across-surfaces theorem [J].
Daumer, M ;
Durr, D ;
Goldstein, S ;
Zanghi, N .
LETTERS IN MATHEMATICAL PHYSICS, 1996, 38 (01) :103-116
[8]   On the quantum probability flux through surfaces [J].
Daumer, M ;
Durr, D ;
Goldstein, S ;
Zanghi, N .
JOURNAL OF STATISTICAL PHYSICS, 1997, 88 (3-4) :967-977
[9]  
DEREZINSKI J, 1997, SCATTERING THEORY CL
[10]   SCATTERING INTO CONES .I. POTENTIAL SCATTERING [J].
DOLLARD, JD .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1969, 12 (03) :193-&