Erosion/redeposition analysis of the ITER first wall with convective and non-convective plasma transport

被引:20
作者
Brooks, J. N.
Allain, J. P.
Rognlien, T. D.
机构
[1] Argonne Natl Lab, Argonne, IL 60439 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
关键词
D O I
10.1063/1.2401610
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Sputtering erosion/redeposition is analyzed for IAEA [Report GA10FDR1-01-07-13 (2001)] plasma facing components, with scrape-off layer (SOL) plasma convective radial transport and nonconvective (diffusion-only) transport. The analysis uses the UEDGE code [T .D. Rognlien , J. Nucl. Mater. 196, 347 (1992)] and DEGAS code [D. P. Stotler , Contrib. Plasma Phys. 40, 221 (2000)] to compute plasma SOL profiles and ion and neutral fluxes to the wall, TRIM-SP code [J. P. Biersack, W. Eckstein, J. Appl. Phys. A34, 73 (1984)] to compute sputter yields, and the REDEP/WBC code package [J. N. Brooks, Fusion Eng. Des. 60, 515 (2002)] for three-dimensional kinetic modeling of sputtered particle transport. Convective transport is modeled for the background plasma by a radially varying outward-flow component of the fluid velocity, and for the impurity ions by three models designed to bracket existing models/data. Results are reported here for the first wall with the reference beryllium coating and an alternative tungsten coating. The analysis shows: (1) sputtering erosion for convective flow is 20-40 times higher than for diffusion-only but acceptably low (similar to 0.3 nm/s) for beryllium, and very low (similar to 0.002 nm/s) for tungsten; (2) plasma contamination by wall sputtering, with convective flow, is of order 1% for beryllium and negligible for tungsten; (3) wall-to-divertor beryllium transport may be significant (similar to 10%-60% of the sputtered Be current); (4) tritium co-deposition in redeposited beryllium may be high (similar to 1-6 gT/400 s pulse). (c) 2006 American Institute of Physics.
引用
收藏
页数:8
相关论文
共 21 条
[1]  
ANTAR GY, 2001, PHYS REV LETT, V87, P6
[2]   SPUTTERING STUDIES WITH THE MONTE-CARLO PROGRAM TRIM.SP [J].
BIERSACK, JP ;
ECKSTEIN, W .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1984, 34 (02) :73-94
[3]   Transport by intermittency in the boundary of the DIII-D tokamak [J].
Boedo, JA ;
Rudakov, DL ;
Moyer, RA ;
McKee, GR ;
Colchin, RJ ;
Schaffer, MJ ;
Stangeby, PG ;
West, WP ;
Allen, SL ;
Evans, TE ;
Fonck, RJ ;
Hollmann, EM ;
Krasheninnikov, S ;
Leonard, AW ;
Nevins, W ;
Mahdavi, MA ;
Porter, GD ;
Tynan, GR ;
Whyte, DG ;
Xu, X .
PHYSICS OF PLASMAS, 2003, 10 (05) :1670-1677
[4]   Erosion, transport, and tritium codeposition analysis of a beryllium wall tokamak [J].
Brooks, JN ;
Allain, JP ;
Alman, DA ;
Ruzic, DN .
FUSION ENGINEERING AND DESIGN, 2005, 72 (04) :363-375
[5]   NEAR-SURFACE SPUTTERED PARTICLE-TRANSPORT FOR AN OBLIQUE-INCIDENCE MAGNETIC-FIELD PLASMA [J].
BROOKS, JN .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1990, 2 (08) :1858-1863
[6]   Modeling of sputtering erosion/redeposition - status and implications for fusion design [J].
Brooks, JN .
FUSION ENGINEERING AND DESIGN, 2002, 60 (04) :515-526
[7]   Hydrogen isotope retention and recycling in fusion reactor plasma-facing components [J].
Causey, RA .
JOURNAL OF NUCLEAR MATERIALS, 2002, 300 (2-3) :91-117
[8]  
DOERNER R, IN PRESS J NUCL MAT
[9]   Plasma-material interactions in current tokamaks and their implications for next step fusion reactors [J].
Federici, G ;
Skinner, CH ;
Brooks, JN ;
Coad, JP ;
Grisolia, C ;
Haasz, AA ;
Hassanein, A ;
Philipps, V ;
Pitcher, CS ;
Roth, J ;
Wampler, WR ;
Whyte, DG .
NUCLEAR FUSION, 2001, 41 (12R) :1967-2137
[10]  
*ITER, 2001, 1010713 ITER