Mixed conductivity and stability of A-site-deficient Sr(Fe,Ti)O3-δ perovskites

被引:90
作者
Kharton, VV [1 ]
Kovalevsky, AV
Tsipis, EV
Viskup, AP
Naumovich, EN
Jurado, JR
Frade, JR
机构
[1] Univ Aveiro, CICECO, Dept Ceram & Glass Engn, P-3810193 Aveiro, Portugal
[2] Belarusian State Univ, Inst Physicochem Problems, Minsk 220050, BELARUS
[3] CSIC, Inst Ceram & Glass, Madrid 28500, Spain
关键词
perovskite; strontium ferrite; A-site deficiency; ionic conductivity; thermal expansion;
D O I
10.1007/s10008-002-0286-3
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Deficiency in the A sublattice of perovskite-type Sr1-yFe0.8Ti0.2O3-delta(y = 0-0.06) leads to suppression of oxygen-vacancy ordering and to increasing oxygen ionic conductivity, unit cell volume, thermal expansion, and stability in CO2-containing atmospheres. The total electrical conductivity, predominantly p-type electronic in air, decreases with increasing A-site deficiency at 300-700 K and is essentially independent of the cation vacancy concentration at higher temperatures. Oxygen ion transference numbers for Sr1-yFe0.8Ti0.2O3-delta in air, estimated from the faradaic efficiency and oxygen permeation data, vary in the range from 0.002 to 0.015 at 1073-1223 K, increasing with temperature. The maximum ionic conductivity was observed for Sr0.97Fe0.8Ti0.2O3-delta ceramics. In the system Sr0.97Fe1-xTixO3-delta (x=0.1-0.6), thermal expansion and electron-hole conductivity both decrease with x. Moderate additions of titanium (up to 20%) in Sr-0.97(Fe,Ti)O3-delta result in higher ionic conductivity and lower activation energy for ionic transport, owing to disordering in the oxygen sublattice; further doping decreases the ionic conduction. It was shown that time degradation of the oxygen permeability, characteristic of Sr(Fe,Ti)O3-delta membranes and resulting from partial ordering processes., can be reduced by cycling of the oxygen pressure at the membrane permeate side. Thermal expansion coefficients of Sr1-yTi1-xFexO3-delta (x=0.10-0.60, y=0-0.06) in air are in the range (11.7-16.5)x10(-6) K-1 at 350-750 K and(16.6-31.1)x10(-6) K-1 at 750-1050 K.
引用
收藏
页码:30 / 36
页数:7
相关论文
共 36 条
[11]   Electrical and thermal properties of La0.2Sr0.8Cu0.1Fe0.9O3-δ and La0.2Sr0.8Cu0.2Fe0.8O3-δ [J].
Kaus, I ;
Anderson, HU .
SOLID STATE IONICS, 2000, 129 (1-4) :189-200
[12]   Surface-limited ionic transport in perovskites Sr0.97(Ti,Fe,Mg)O3-δ [J].
Kharton, VV ;
Viskup, AP ;
Kovalevsky, AV ;
Figueiredo, FM ;
Jurado, JR ;
Yaremchenko, AA ;
Naumovich, EN ;
Frade, JR .
JOURNAL OF MATERIALS CHEMISTRY, 2000, 10 (05) :1161-1169
[13]   Oxygen permeability of perovskites in the system SrCoO3-delta-SrTiO3 [J].
Kharton, VV ;
Li, SB ;
Kovalevsky, AV ;
Naumovich, EN .
SOLID STATE IONICS, 1997, 96 (3-4) :141-151
[14]   Oxygen permeability and thermal expansion of SrCo(Ti)O3-δ perovskites [J].
Kharton, VV ;
Shuangbao, L ;
Kovalevsky, AV ;
Viskup, AP ;
Naumovich, EN ;
Tonoyan, AA .
MATERIALS CHEMISTRY AND PHYSICS, 1998, 53 (01) :6-12
[15]   Oxygen diffusion in, and thermal expansion of, SrTiO3-δ- and CaTiO3-δ-based materials [J].
Kharton, VV ;
Figueiredo, FM ;
Kovalevsky, AV ;
Viskup, AP ;
Naumovich, EN ;
Jurado, JR ;
Frade, JR .
DEFECTS AND DIFFUSION IN CERAMICS: AN ANNUAL RETROSPECTIVE III, 2000, 186-1 :119-136
[16]   Oxygen ionic conductivity of Ti-containing strontium ferrite [J].
Kharton, VV ;
Viskup, AP ;
Kovalevsky, AV ;
Jurado, JR ;
Naumovich, EN ;
Vecher, AA ;
Frade, JR .
SOLID STATE IONICS, 2000, 133 (1-2) :57-65
[17]   Transport properties and thermal expansion of Sr0.97Ti1-xFexO3-δ (x=0.2-0.8) [J].
Kharton, VV ;
Kovalevsky, AV ;
Viskup, AP ;
Jurado, JR ;
Figueiredo, FM ;
Naumovich, EN ;
Frade, JR .
JOURNAL OF SOLID STATE CHEMISTRY, 2001, 156 (02) :437-444
[18]  
KHARTON VV, 1991, INORG MATER+, V27, P2240
[19]   Oxygen permeation through Sr(Ln)CoO3-δ (Ln=La, Nd, Sm, Gd) ceramic membranes [J].
Kovalevsky, AV ;
Kharton, VV ;
Tikhonovich, VN ;
Naumovich, EN ;
Tonoyan, AA ;
Reut, OP ;
Boginsky, LS .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1998, 52 (2-3) :105-116
[20]  
MAZANEC TJ, 1997, CERAMIC MEMBRANES, V1, P16