Regulation of glycogen synthase by glucose and glycogen - A possible role for AMP-activated protein kinase

被引:81
作者
Halse, R
Fryer, LGD
McCormack, JG
Carling, D
Yeaman, SJ
机构
[1] Univ Newcastle, Sch Biochem & Genet, Sch Med, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England
[2] Hammersmith Hosp, Cellular Stress Grp, MRC Clin Sci Ctr, Imperial Coll Sch Med, London, England
[3] Novo Nordisk AS, Target Cell Biol, Bagsvaerd, Denmark
关键词
HUMAN SKELETAL-MUSCLE; INSULIN; TRANSPORT; PHOSPHORYLATION; MECHANISM; SYNTHETASE; EXERCISE; CELLS;
D O I
10.2337/diabetes.52.1.9
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
We report here use of human myoblasts in culture to study the relationships between cellular glycogen concentrations and the activities of glycogen synthase (GS) and AMP-activated protein kinase (AMPK). Incubation of cells for 2 h in the absence of glucose led to a 25% decrease in glycogen content and a significant decrease in the fractional activity of GS. This was accompanied by stimulation of both the alpha1 and alpha2 isoforms of AMPK, without significant alterations in the ratios of adenine nucleotides. When glucose was added to glycogen-depleted cells, a rapid and substantial increase in GS activity was accompanied by inactivation of AMTK back to basal values. Inclusion of the glycogen phosphorylase inhibitor, CP-91149, prevented the loss of glycogen during glucose deprivation but not the activation of AMPK. However, in the absence of prior glycogen breakdown, glucose treatment failed to activate GS above control values, indicating the crucial role of glycogen content. Activation of AMPK by either 5-aminoimida-zole-4-carboxamide 1-beta-D-ribofuranoside (AICAR) or hydrogen peroxide was also associated with a decrease in the activity ratio of GS. AICAR treatment had no effect on total cellular glycogen content but led to a modest increase in glucose uptake. These data support a role for AMPK in both stimulating glucose uptake and inhibiting GS in intact cells, thus 1 promoting glucose flux through glycolysis.
引用
收藏
页码:9 / 15
页数:7
相关论文
共 43 条
[1]   Effect of AICAR treatment on glycogen metabolism in skeletal muscle [J].
Aschenbach, WG ;
Hirshman, MF ;
Fujii, N ;
Sakamoto, K ;
Howlett, KF ;
Goodyear, LJ .
DIABETES, 2002, 51 (03) :567-573
[2]   INHIBITION OF GLYCOGEN-SYNTHASE KINASE-3 BY INSULIN IN CULTURED HUMAN SKELETAL-MUSCLE MYOBLASTS [J].
BORTHWICK, AC ;
WELLS, AM ;
ROCHFORD, JJ ;
HUREL, SJ ;
TURNBULL, DM ;
YEAMAN, SJ .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1995, 210 (03) :738-745
[3]   THE SUBSTRATE AND SEQUENCE SPECIFICITY OF THE AMP-ACTIVATED PROTEIN-KINASE - PHOSPHORYLATION OF GLYCOGEN-SYNTHASE AND PHOSPHORYLASE-KINASE [J].
CARLING, D ;
HARDIE, DG .
BIOCHIMICA ET BIOPHYSICA ACTA, 1989, 1012 (01) :81-86
[4]   The regulation of AMP-activated protein kinase by H2O2. [J].
Choi, SL ;
Kim, SJ ;
Lee, KT ;
Kim, J ;
Mu, J ;
Birnbaum, MJ ;
Kim, SS ;
Ha, J .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2001, 287 (01) :92-97
[6]   5-AMINOIMIDAZOLE-4-CARBOXAMIDE RIBONUCLEOSIDE - A SPECIFIC METHOD FOR ACTIVATING AMP-ACTIVATED PROTEIN-KINASE IN INTACT-CELLS [J].
CORTON, JM ;
GILLESPIE, JG ;
HAWLEY, SA ;
HARDIE, DG .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1995, 229 (02) :558-565
[7]   GLYCOGEN SYNTHETASE + CONTROL OF GLYCOGEN SYNTHESIS IN MUSCLE [J].
DANFORTH, WH ;
HARVEY, P .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1964, 16 (05) :466-&
[8]   TISSUE DISTRIBUTION OF THE AMP-ACTIVATED PROTEIN-KINASE, AND LACK OF ACTIVATION BY CYCLIC-AMP-DEPENDENT PROTEIN-KINASE, STUDIED USING A SPECIFIC AND SENSITIVE PEPTIDE ASSAY [J].
DAVIES, SP ;
CARLING, D ;
HARDIE, DG .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1989, 186 (1-2) :123-128
[9]   THE MOLECULAR MECHANISM BY WHICH INSULIN STIMUALTES GLYCOGEN-SYNTHESIS IN MAMMALIAN SKELETAL-MUSCLE [J].
DENT, P ;
LAVOINNE, A ;
NAKIELNY, S ;
CAUDWELL, FB ;
WATT, P ;
COHEN, P .
NATURE, 1990, 348 (6299) :302-308
[10]   Contraction-stimulated muscle glucose transport and GLUT-4 surface content are dependent on glycogen content [J].
Derave, W ;
Lund, S ;
Holman, GD ;
Wojtaszewski, J ;
Pedersen, O ;
Richter, EA .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 1999, 277 (06) :E1103-E1110