Symmetric hyperbolicity and consistent boundary conditions for second-order Einstein equations -: art. no. 044032

被引:53
作者
Gundlach, C [1 ]
Martín-García, JM
机构
[1] Univ Southampton, Sch Math, Southampton SO17 1BJ, Hants, England
[2] CSIC, Ctr Fis Miguel A Catalan, Inst Matemat & Fis Fundamental, E-28006 Madrid, Spain
来源
PHYSICAL REVIEW D | 2004年 / 70卷 / 04期
关键词
D O I
10.1103/PhysRevD.70.044032
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present two families of first-order in time and second-order in space formulations of the Einstein equations (variants of the Arnowitt-Deser-Misner formulation) that admit a complete set of characteristic variables and a conserved energy that can be expressed in terms of the characteristic variables. The associated constraint system is also symmetric hyperbolic in this sense, and all characteristic speeds are physical. We propose a family of constraint-preserving boundary conditions that is applicable if the boundary is smooth with tangential shift. We conjecture that the resulting initial-boundary value problem is well-posed.
引用
收藏
页数:16
相关论文
共 33 条
[1]   Black hole excision for dynamic black holes -: art. no. 061501 [J].
Alcubierre, M ;
Brügmann, B ;
Pollney, D ;
Seidel, E ;
Takahashi, R .
PHYSICAL REVIEW D, 2001, 64 (06)
[2]   Towards an understanding of the stability properties of the 3+1 evolution equations in general relativity -: art. no. 124011 [J].
Alcubierre, M ;
Allen, G ;
Brügmann, B ;
Seidel, E ;
Suen, WM .
PHYSICAL REVIEW D, 2000, 62 (12) :1-15
[3]   Fixing Einstein's equations [J].
Anderson, A ;
York, JW .
PHYSICAL REVIEW LETTERS, 1999, 82 (22) :4384-4387
[4]   Numerical integration of Einstein's field equations [J].
Baumgarte, TW ;
Shapiro, SL .
PHYSICAL REVIEW D, 1999, 59 (02)
[5]   NEW FORMALISM FOR NUMERICAL RELATIVITY [J].
BONA, C ;
MASSO, J ;
SEIDEL, E ;
STELA, J .
PHYSICAL REVIEW LETTERS, 1995, 75 (04) :600-603
[6]   Einstein's equations with asymptotically stable constraint propagation [J].
Brodbeck, O ;
Frittelli, S ;
Reula, OA .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (02) :909-923
[7]   Well posed constraint-preserving boundary conditions for the linearized Einstein equations [J].
Calabrese, G ;
Pullin, J ;
Reula, O ;
Sarbach, O ;
Tiglio, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 240 (1-2) :377-395
[8]   Detecting ill posed boundary conditions in general relativity [J].
Calabrese, G ;
Sarbach, O .
JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (09) :3888-3899
[9]   Constraint-preserving boundary conditions in numerical relativity [J].
Calabrese, G ;
Lehner, L ;
Tiglio, M .
PHYSICAL REVIEW D, 2002, 65 (10)
[10]   The initial boundary value problem for Einstein's vacuum field equation [J].
Friedrich, H ;
Nagy, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 201 (03) :619-655