Detecting feature from spatial point processes using Collective Nearest Neighbor

被引:9
作者
Pei, Tao [1 ]
Zhu, A-Xing [1 ,2 ]
Zhou, Chenghu [1 ]
Li, Baolin [1 ]
Qin, Chengzhi [1 ]
机构
[1] Chinese Acad Sci, State Key Lab Resources & Environm Informat Syst, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China
[2] Univ Wisconsin Madison, Dept Geog, Madison, WI 53706 USA
关键词
Classification entropy; Noise; Point pattern; Feature; Spatial scan method; Shared nearest neighbor; EM algorithm; CLUSTERS; FORESHOCK; MODEL; SEISMICITY; EARTHQUAKE; SEQUENCE; CLUTTER;
D O I
10.1016/j.compenvurbsys.2009.08.001
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In a spatial point set, clustering patterns (features) are difficult to locate due to the presence of noise. Previous methods, either using grid-based method or distance-based method to separate feature from noise, suffer from the parameter choice problem, which may produce different point patterns in terms of shape and area. This paper presents the Collective Nearest Neighbor method (CLNN) to identify features. CLNN assumes that in spatial data clustered points and noise can be viewed as two homogenous point processes. The one with the higher intensity is considered as a feature and the one with the lower intensity is treated as noise. As a result, they can be separated according to the difference in intensity between them. With CLNN, points are first classified into feature and noise based on the kth nearest distance (the distance between a point and its kth nearest neighbor) at various values of k. Then, CLNN selects those classifications in which the separated classes (i.e. features and noise) are homogenous Poisson processes and cannot be further divided. Finally, CLNN identifies clustered points by averaging the selected classifications. Evaluation of CLNN using simulated data shows that CLNN reduces the number of false points significantly. The comparison between CLNN, the shared nearest neighbor, the spatial scan and the classification entropy method shows that CLNN produced the fewest false points. A case study using seismic data in southwestern China showed that CLNN is able to identify foreshocks of the Songpan earthquake (M=7.2), which may help to locate the epicenter of the Songpan earthquake. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:435 / 447
页数:13
相关论文
共 51 条
[1]  
Agrawal R., 1998, Proc. of ACM SIGMOD, P94
[2]  
Ankerst M, 1999, SIGMOD RECORD, VOL 28, NO 2 - JUNE 1999, P49
[3]  
[Anonymous], 1991, STAT SPATIAL DATA
[4]  
Boots BarryN., 1988, POINT PATTERN ANAL
[5]   Nearest-neighbor clutter removal for estimating features in spatial point processes [J].
Byers, S ;
Raftery, AE .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (442) :577-584
[6]   A CLASSIFICATION EM ALGORITHM FOR CLUSTERING AND 2 STOCHASTIC VERSIONS [J].
CELEUX, G ;
GOVAERT, G .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1992, 14 (03) :315-332
[7]  
CHAINEY S, 2005, GIS CRIME MAPPING MA
[8]   Pattern characteristics of foreshock sequences [J].
Chen, Y ;
Liu, J ;
Ge, HK .
PURE AND APPLIED GEOPHYSICS, 1999, 155 (2-4) :395-408
[9]  
*CHIN SEISM NETW D, 2009, CHIN SEISM NETW CSN
[10]   Detecting features in spatial point processes with clutter via model-based clustering [J].
Dasgupta, A ;
Raftery, AE .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (441) :294-302