CDK2 is a target for retinoic acid-mediated growth inhibition in MCF-7 human breast cancer cells

被引:90
作者
Teixeira, C [1 ]
Pratt, MAC [1 ]
机构
[1] UNIV OTTAWA, DEPT PHARMACOL, OTTAWA, ON K1H 8M5, CANADA
关键词
D O I
10.1210/me.11.9.1191
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Retinoic acid (RA) inhibition of breast cancer cell growth is associated with an accumulation of cells in G1 phase of the cell cycle. We have investigated the effects of RA on the expression and activity of cell cycle-regulatory proteins in MCF-7 human breast cancer cells. Flow cytometry analysis of MCF-7 cells treated with RA revealed a decrease in the percentage of cells in S phase by 48 h, which was maximal by 72 h. Phosphorylation of the retinoblastoma protein (pRb) was partially reduced in RA-treated cells accompanied by a decrease in the level of retinoblastoma protein. Expression of the cyclin D1 transcript was reduced by 48 h and cyclin-dependent kinase 2 (cdk2) mRNA levels declined within 8 h posttreatment followed by a decrease in cyclin D1 and cdk2 protein levels. Message and protein levels of cdk4 and cdc2 were not affected by RA. While cdk4 activity was similar in control and RA-treated cells, cdk2 activity began to decrease within 48 h of exposure to RA and was profoundly reduced after 72 h. This reduced activity was associated with decreased phosphorylation of cdk2. The decrease in cdk2 activity occurred in the absence of RA-mediated increases in the levels of the cdk inhibitors p21 and p27. However, assays of cdk2 from pooled lysates from RA-treated and control cells showed that RA-treated cells contain a cdk2-inhibitory activity. Our results show that RA inhibits cell cycle progression of MCF-7 cells by inhibiting cdk2 mRNA and protein production and by decreasing cdk2 activity.
引用
收藏
页码:1191 / 1202
页数:12
相关论文
共 69 条
[31]   CLONING OR P57(KIP2), A CYCLIN-DEPENDENT KINASE INHIBITOR WITH UNIQUE DOMAIN-STRUCTURE AND TISSUE DISTRIBUTION [J].
LEE, MH ;
REYNISDOTTIR, I ;
MASSAGUE, J .
GENES & DEVELOPMENT, 1995, 9 (06) :639-649
[32]  
Liu Y, 1996, MOL CELL BIOL, V16, P1138
[33]   THE NUCLEAR RECEPTOR SUPERFAMILY - THE 2ND DECADE [J].
MANGELSDORF, DJ ;
THUMMEL, C ;
BEATO, M ;
HERRLICH, P ;
SCHUTZ, G ;
UMESONO, K ;
BLUMBERG, B ;
KASTNER, P ;
MARK, M ;
CHAMBON, P ;
EVANS, RM .
CELL, 1995, 83 (06) :835-839
[34]   EFFECT OF 4-HYDROXYPHENYLRETINAMIDE AND RETINOIC ACID ON PROLIFERATION AND CELL-CYCLE OF CULTURED HUMAN-BREAST CANCER-CELLS [J].
MARTH, C ;
BOCK, G ;
DAXENBICHLER, G .
JOURNAL OF THE NATIONAL CANCER INSTITUTE, 1985, 75 (05) :871-875
[35]   ACTIVATION OF CYCLIN-DEPENDENT KINASE-4 (CDK4) BY MOUSE MO15-ASSOCIATED KINASE [J].
MATSUOKA, M ;
KATO, JY ;
FISHER, RP ;
MORGAN, DO ;
SHERR, CJ .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (11) :7265-7275
[36]   P57(KIP2), A STRUCTURALLY DISTINCT MEMBER OF THE P21(CIP1) CDK INHIBITOR FAMILY, IS A CANDIDATE TUMOR-SUPPRESSOR GENE [J].
MATSUOKA, S ;
EDWARDS, MC ;
BAI, C ;
PARKER, S ;
ZHANG, PM ;
BALDINI, A ;
HARPER, JW ;
ELLEDGE, SJ .
GENES & DEVELOPMENT, 1995, 9 (06) :650-662
[37]   IDENTIFICATION AND PROPERTIES OF AN ATYPICAL CATALYTIC SUBUNIT (P34(PSK-J3)/CDK4) FOR MAMMALIAN-D TYPE-G1 CYCLINS [J].
MATSUSHIME, H ;
EWEN, ME ;
STROM, DK ;
KATO, JY ;
HANKS, SK ;
ROUSSEL, MF ;
SHERR, CJ .
CELL, 1992, 71 (02) :323-334
[38]   D-TYPE CYCLIN-DEPENDENT KINASE-ACTIVITY IN MAMMALIAN-CELLS [J].
MATSUSHIME, H ;
QUELLE, DE ;
SHURTLEFF, SA ;
SHIBUYA, M ;
SHERR, CJ ;
KATO, JY .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (03) :2066-2076
[39]   PRINCIPLES OF CDK REGULATION [J].
MORGAN, DO .
NATURE, 1995, 374 (6518) :131-134
[40]   CLONING OF SENESCENT CELL-DERIVED INHIBITORS OF DNA-SYNTHESIS USING AN EXPRESSION SCREEN [J].
NODA, A ;
NING, Y ;
VENABLE, SF ;
PEREIRASMITH, OM ;
SMITH, JR .
EXPERIMENTAL CELL RESEARCH, 1994, 211 (01) :90-98