NO formation by a catalytically self-sufficient bacterial nitric oxide synthase from Sorangium cellulosum

被引:50
作者
Agapie, Theodor [1 ,5 ]
Suseno, Sandy [1 ]
Woodward, Joshua J. [1 ]
Stoll, Stefan [6 ]
Britt, R. David [6 ]
Marletta, Michael A. [1 ,2 ,3 ,4 ]
机构
[1] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Cali Inst Quantitat Biosci, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys Biosci, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Miller Inst Basic Sci, Berkeley, CA 94720 USA
[6] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA
关键词
heme protein; iron-sulfur cluster; reductase; tetrahydrobiopterin; tetrahydrofolate; BACILLUS-SUBTILIS; HEME DOMAIN; DEINOCOCCUS-RADIODURANS; ESCHERICHIA-COLI; PROTEIN; PTERIN; TETRAHYDROBIOPTERIN; ENZYMOLOGY; EXPRESSION; CATALYSIS;
D O I
10.1073/pnas.0908443106
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The role of nitric oxide ( NO) in the host response to infection and in cellular signaling is well established. Enzymatic synthesis of NO is catalyzed by the nitric oxide synthases (NOSs), which convert Arg into NO and citrulline using co-substrates O-2 and NADPH. Mammalian NOS contains a flavin reductase domain ( FAD and FMN) and a catalytic heme oxygenase domain (P450-type heme and tetrahydrobiopterin). Bacterial NOSs, while much less studied, were previously identified as only containing the heme oxygenase domain of the more complex mammalian NOSs. We report here on the characterization of a NOS from Sorangium cellulosum ( both full-length, scNOS, and oxygenase domain, scNOSox). scNOS contains a catalytic, oxygenase domain similar to those found in the mammalian NOS and in other bacteria. Unlike the other bacterial NOSs reported to date, however, this protein contains a fused reductase domain. The scNOS reductase domain is unique for the entire NOS family because it utilizes a 2Fe2S cluster for electron transfer. scNOS catalytically produces NO and citrulline in the presence of either tetrahydrobiopterin or tetrahydrofolate. These results establish a bacterial electron transfer pathway used for biological NO synthesis as well as a unique flexibility in using different tetrahydropterin cofactors for this reaction.
引用
收藏
页码:16221 / 16226
页数:6
相关论文
共 39 条
[1]   Direct evidence for nitric oxide production by a nitric-oxide synthase-like protein from Bacillus subtilis [J].
Adak, S ;
Aulak, KS ;
Stuehr, DJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (18) :16167-16171
[2]   Cloning, expression, and characterization of a nitric oxide synthase protein from Deinococcus radiodurans [J].
Adak, S ;
Bilwes, AM ;
Panda, K ;
Hosfield, D ;
Aulak, KS ;
McDonald, JF ;
Tainer, JA ;
Getzoff, ED ;
Crane, BR ;
Stuehr, DJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (01) :107-112
[3]   Nitric oxide synthases: structure, function and inhibition [J].
Alderton, WK ;
Cooper, CE ;
Knowles, RG .
BIOCHEMICAL JOURNAL, 2001, 357 (03) :593-615
[4]   The MicrobesOnline web site for comparative genomics [J].
Alm, EJ ;
Huang, KH ;
Price, MN ;
Koche, RP ;
Keller, K ;
Dubchak, IL ;
Arkin, AP .
GENOME RESEARCH, 2005, 15 (07) :1015-1022
[5]   A LIGAND-FIELD MODEL TO DESCRIBE A NEW CLASS OF 2FE-2S CLUSTERS IN PROTEINS AND THEIR SYNTHETIC ANALOGS [J].
BERTRAND, P ;
GUIGLIARELLI, B ;
GAYDA, JP ;
BEARDWOOD, P ;
GIBSON, JF .
BIOCHIMICA ET BIOPHYSICA ACTA, 1985, 831 (02) :261-266
[6]   INTERPRETATION OF ELECTRON-PARAMAGNETIC RESONANCE-SPECTRA OF BINUCLEAR IRON-SULFUR PROTEINS [J].
BLUMBERG, WE ;
PEISACH, J .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1974, 162 (02) :502-512
[7]   Structure of nitric oxide synthase oxygenase dimer with pterin and substrate [J].
Crane, BR ;
Arvai, AS ;
Ghosh, DK ;
Wu, CQ ;
Getzoff, ED ;
Stuehr, DJ ;
Tainer, JA .
SCIENCE, 1998, 279 (5359) :2121-2126
[8]   EPR and ENDOR characterization of intermediates in the cryoreduced oxy-nitric oxide synthase heme domain with bound L-arginine or NG-hydroxyarginine [J].
Davydov, R ;
Ledbetter-Rogers, A ;
Martásek, P ;
Larukhin, M ;
Sono, M ;
Dawson, JH ;
Masters, BSS ;
Hoffman, BM .
BIOCHEMISTRY, 2002, 41 (33) :10375-10381
[9]   MOLECULAR MECHANISMS OF NITRIC-OXIDE REGULATION - POTENTIAL RELEVANCE TO CARDIOVASCULAR-DISEASE [J].
DINERMAN, JL ;
LOWENSTEIN, CJ ;
SNYDER, SH .
CIRCULATION RESEARCH, 1993, 73 (02) :217-222
[10]   Structural characterization of nitric oxide synthase isoforms reveals striking active-site conservation [J].
Fischmann, TO ;
Hruza, A ;
Niu, XD ;
Fossetta, JD ;
Lunn, CA ;
Dolphin, E ;
Prongay, AJ ;
Reichert, P ;
Lundell, DJ ;
Narula, SK ;
Weber, PC .
NATURE STRUCTURAL BIOLOGY, 1999, 6 (03) :233-242