Maximal Lp-regularity for the Laplacian on Lipschitz domains

被引:35
作者
Wood, Ian [1 ]
机构
[1] Cardiff Univ, Sch Math, Cardiff CF24 4AG, Wales
关键词
D O I
10.1007/s00209-006-0055-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Laplacian with Dirichlet or Neumann boundary conditions on bounded Lipschitz domains Omega, both with the following two domains of definition: D-1(Delta) = {u is an element of W-1,W-p(Omega) : Delta u is an element of L-p(Omega), Bu = 0}, or D-2(Delta) = {u is an element of W-2,W-p(Omega) : Bu = 0}, , where B is the boundary operator. We prove that, under certain restrictions on the range of p, these operators generate positive analytic contraction semigroups on L-p(Omega) which implies maximal regularity for the corresponding Cauchy problems. In particular, if Omega is bounded and convex and 1 < p <= 2, the Laplacian with domain D (2)(Delta) has the maximal regularity property, as in the case of smooth domains. In the last part, we construct an example that proves that, in general, the Dirichlet-Laplacian with domain D (1)(Delta) is not even a closed operator.
引用
收藏
页码:855 / 875
页数:21
相关论文
共 28 条
[1]   L(P)-INTEGRABILITY OF THE 2ND-ORDER DERIVATIVES OF GREEN POTENTIALS IN CONVEX DOMAINS [J].
ADOLFSSON, V .
PACIFIC JOURNAL OF MATHEMATICS, 1993, 159 (02) :201-225
[2]   L2-INTEGRABILITY OF 2ND-ORDER DERIVATIVES FOR POISSON EQUATION IN NONSMOOTH DOMAINS [J].
ADOLFSSON, V .
MATHEMATICA SCANDINAVICA, 1992, 70 (01) :146-160
[3]   L(P)-INTEGRABILITY OF THE 2ND-ORDER DERIVATIVES FOR THE NEUMANN PROBLEM IN CONVEX DOMAINS [J].
ADOLFSSON, V ;
JERISON, D .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1994, 43 (04) :1123-1138
[4]   PROPERTIES OF SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS IN BANACH SPACE [J].
AGMON, S ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1963, 16 (02) :121-&
[5]  
[Anonymous], 2001, J MATH SCI N Y, DOI 10.1023/A:1011319521
[6]  
Arendt W, 1999, PROG NONLIN, V35, P29
[8]   THE INITIAL-NEUMANN PROBLEM FOR THE HEAT-EQUATION IN LIPSCHITZ CYLINDERS [J].
BROWN, RM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 320 (01) :1-52
[9]  
Caffarelli L. A., 1987, Rev. Mat. Iberoamericana, V3, P139
[10]   LQ-ESTIMATES FOR GREEN POTENTIALS IN LIPSCHITZ DOMAINS [J].
DAHLBERG, BEJ .
MATHEMATICA SCANDINAVICA, 1979, 44 (01) :149-170