Comparative and pharmacophore model for deacetylase SIRT1

被引:52
作者
Huhtiniemi, Tero
Wittekindt, Carsten
Laitinen, Tuomo
Leppanen, Jukka
Salminen, Antero
Poso, Antti
Lahtela-Kakkonen, Maija
机构
[1] Univ Kuopio, Dept Pharmaceut Chem, FIN-70211 Kuopio, Finland
[2] Univ Kuopio, Dept Neurol & Neurosci, FIN-70211 Kuopio, Finland
关键词
comparative modelling; computational docking; NAD-dependent deacetylation; pharmacophore; Sir2; SirT1; sirtuins;
D O I
10.1007/s10822-006-9084-9
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Sirtuins are NAD-dependent histone deacetylases, which cleave the acetyl-group from acetylated proteins, such as histones but also the acetyl groups from several transcription factors, and in this way can change their activities. Of all seven mammalian SirTs, the human sirtuin SirT1 has been the most extensively studied. However, there is no crystal structure or comparative model reported for SirT1. We have therefore built up a three-dimensional comparison model of the SirT1 protein catalytic core (domain area from residues 244 to 498 of the full length SirT1) in order to assist in the investigation of active site-ligand interactions and in the design of novel SirT1 inhibitors. In this study we also propose the binding-mode of recently reported set of indole-based inhibitors in SirT1. The site of interaction and the ligand conformation were predicted by the use of molecular docking techniques. To distinguish between active and inactive compounds, a post-docking filter based on H-bond network was constructed. Docking results were used to investigate the pharmacophore and to identify a filter for database mining.
引用
收藏
页码:589 / 599
页数:11
相关论文
共 44 条
[1]   Mechanism of sirtuin inhibition by nicotinamide:: Altering the NAD+ cosubstrate specificity of a Sir2 enzyme [J].
Avalos, JL ;
Bever, KM ;
Wolberger, C .
MOLECULAR CELL, 2005, 17 (06) :855-868
[2]   Structural basis for the mechanism and regulation of Sir2 enzymes [J].
Avalos, JL ;
Boeke, JD ;
Wolberger, C .
MOLECULAR CELL, 2004, 13 (05) :639-648
[3]   Structure of a Sir2 enzyme bound to an acetylated p53 peptide [J].
Avalos, JL ;
Celic, I ;
Muhammad, S ;
Cosgrove, MS ;
Boeke, JD ;
Wolberger, C .
MOLECULAR CELL, 2002, 10 (03) :523-535
[4]   Identification of a small molecule inhibitor of Sir2p [J].
Bedalov, A ;
Gatbonton, T ;
Irvine, WP ;
Gottschling, DE ;
Simon, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (26) :15113-15118
[5]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[6]   The Protein Data Bank [J].
Berman, HM ;
Battistuz, T ;
Bhat, TN ;
Bluhm, WF ;
Bourne, PE ;
Burkhardt, K ;
Iype, L ;
Jain, S ;
Fagan, P ;
Marvin, J ;
Padilla, D ;
Ravichandran, V ;
Schneider, B ;
Thanki, N ;
Weissig, H ;
Westbrook, JD ;
Zardecki, C .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2002, 58 :899-907
[7]   Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast Sir2 and human SIRT1 [J].
Bitterman, KJ ;
Anderson, RM ;
Cohen, HY ;
Latorre-Esteves, M ;
Sinclair, DA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (47) :45099-45107
[8]   The Sir2 family of protein deacetylases [J].
Blander, G ;
Guarente, L .
ANNUAL REVIEW OF BIOCHEMISTRY, 2004, 73 :417-435
[9]   Mechanism of human SIRT1 activation by resveratrol [J].
Borra, MT ;
Smith, BC ;
Denu, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (17) :17187-17195
[10]   Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase [J].
Brunet, A ;
Sweeney, LB ;
Sturgill, JF ;
Chua, KF ;
Greer, PL ;
Lin, YX ;
Tran, H ;
Ross, SE ;
Mostoslavsky, R ;
Cohen, HY ;
Hu, LS ;
Cheng, HL ;
Jedrychowski, MP ;
Gygi, SP ;
Sinclair, DA ;
Alt, FW ;
Greenberg, ME .
SCIENCE, 2004, 303 (5666) :2011-2015