We analyzed healthy human skin for the presence of endogenous antimicrobial proteins that might explain the unusually high resistance of human skin against infections. A novel 14.5-kDa antimicrobial ribonuclease, termed RNase 7, was isolated from skin-derived stratum corneum. RNase 7 exhibited potent ribonuclease activity and thus may contribute to the well known ribonuclease activity of human skin. RNase 7 revealed broad spectrum antimicrobial activity against many pathogenic microorganisms and remarkably potent activity (lethal dose of 90% < 30 nm) against a vancomycin-resistant Enterococcus faecium. Molecular cloning from skinderived primary keratinocytes and purification of RNase 7 from supernatants of cultured primary keratinocytes indicate that keratinocytes represent the major cellular source in skin and that RNase 7 is secreted. RNase 7 mRNA expression was detected in various epithelial tissues including skin, respiratory tract, genitourinary tract, and at a low level, in the gut. In addition to a constitutive expression, RNase 7 mRNA was induced in cultured primary keratinocytes by interleukin-1beta, interferon-gamma, and bacterial challenge. This is the first report demonstrating RNases as a novel class of epithelial inducible antimicrobial proteins, which may play an important role in the innate immune defense system of human epithelia.