Influence of humidity on the aerosol scattering coefficient and its effect on the upwelling radiance during ACE-2

被引:121
作者
Gassó, S
Hegg, DA
Covert, DS
Collins, D
Noone, KJ
Öström, E
Schmid, B
Russell, PB
Livingston, JM
Durkee, PA
Jonsson, H
机构
[1] Univ Washington, Geophys Program, Seattle, WA 98195 USA
[2] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA
[3] CALTECH, Pasadena, CA 91125 USA
[4] Stockholm Univ, Dept Meteorol, S-10691 Stockholm, Sweden
[5] Bay Area Environm Res Inst, San Francisco, CA USA
[6] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA
[7] SRI Int, Menlo Pk, CA 94025 USA
[8] USN, Postgrad Sch, Monterey, CA USA
来源
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY | 2000年 / 52卷 / 02期
关键词
D O I
10.1034/j.1600-0889.2000.00055.x
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Aerosol scattering coefficients (sigma(sp)) have been measured over the ocean at different relative humidities (RH) as a Function of altitude in the region surrounding the Canary Islands during the Second Aerosol Characterization Experiment (ACE-2) in June and July 1997. The data were collected by the University of Washington passive humidigraph (UWPH) mounted on the Pelican research aircraft. Concurrently, particle size distributions, absorption coefficients and aerosol optical depth were measured throughout 17 flights. A parameterization of sigma(sp) as a function of RH was utilized to assess the impact of aerosol hydration on the upwelling radiance (normalized to the solar constant and cosine of zenith angle). The top of the atmosphere radiance signal was simulated at wavelengths corresponding to visible and near-infrared bands of the EOS-AM ("Terra") detectors, MODIS and MISR. The UWPH measured sigma(sp) at 2 RHs, one below and the other above ambient conditions. Ambient sigma(sp) was obtained by interpolation of these 2 measurements. The data were stratified in terms of 3 types of aerosols: Saharan dust, clean marine (marine boundary layer background) and polluted marine aerosols (i.e., 2- or 1-day old polluted aerosols advected from Europe). An empirical relation for the dependence of sigma(sp) on RH, defined by sigma(sp) (RH) = k. (1 - RH/100)(-gamma), was used with the hygroscopic exponent gamma derived from the data. The following gamma values were obtained for the 3 aerosol types: gamma(dust) = 0.23 +/- 0.05, gamma(clean marine) = 0.69 +/- 0.06 and gamma(polluted marine) = 0.57 +/- 0.06. Based on the measured gamma's, the above equation was utilized to derive aerosol models with different hygroscopicities. The satellite simulation signal code 6S was used to compute the upwelling radiance corresponding to each of those aerosol models at several ambient humidities. For the prelaunch estimated precision of the sensors and the assumed viewing geometry of the instrument, the simulations suggest that the spectral and angular dependence of the reflectance measured by MISR is not sufficient to distinguish aerosol models with various different combinations of values for dry composition, gamma and ambient RH. A similar behavior is observed for MODIS at visible wavelengths. However, the 2100 nm band of MODIS appears to be able to differentiate between at least same aerosol models with different aerosol hygroscopicity given the MODIS calibration error requirements. This result suggests the possibility of retrieval of aerosol hygroscopicity by MODIS.
引用
收藏
页码:546 / 567
页数:22
相关论文
共 54 条
  • [11] MISR - A MULTIANGLE IMAGING SPECTRORADIOMETER FOR GEOPHYSICAL AND CLIMATOLOGICAL RESEARCH FROM EOS
    DINER, DJ
    BRUEGGE, CJ
    MARTONCHIK, JV
    ACKERMAN, TP
    DAVIES, R
    GERSTL, SAW
    GORDON, HR
    SELLERS, PJ
    CLARK, J
    DANIELS, JA
    DANIELSON, ED
    DUVAL, VG
    KLAASEN, KP
    LILIENTHAL, GW
    NAKAMOTO, DI
    PAGANO, RJ
    REILLY, TH
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1989, 27 (02): : 200 - 214
  • [12] Regional aerosol optical depth characteristics from satellite observations:: ACE-1, TARFOX and ACE-2 results
    Durkee, PA
    Nielsen, KE
    Smith, PJ
    Russell, PB
    Schmid, B
    Livingston, JM
    Holben, BN
    Tomasi, C
    Vitale, V
    Collins, D
    Flagan, RC
    Seinfeld, JH
    Noone, KJ
    Öström, E
    Gassó, S
    Hegg, D
    Russell, LM
    Bates, TS
    Quinn, PK
    [J]. TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 2000, 52 (02): : 484 - 497
  • [13] GLOBAL ANALYSIS OF AEROSOL-PARTICLE CHARACTERISTICS
    DURKEE, PA
    PFEIL, F
    FROST, E
    SHEMA, R
    [J]. ATMOSPHERIC ENVIRONMENT PART A-GENERAL TOPICS, 1991, 25 (11): : 2457 - 2471
  • [14] THE RELATIONSHIP BETWEEN MARINE AEROSOL-PARTICLES AND SATELLITE-DETECTED RADIANCE
    DURKEE, PA
    JENSEN, DR
    HINDMAN, EE
    VONDERHAAR, TH
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1986, 91 (D3) : 4063 - 4072
  • [15] FITZGERALD JW, 1982, J ATMOS SCI, V39, P1838, DOI 10.1175/1520-0469(1982)039<1838:TSASCO>2.0.CO
  • [16] 2
  • [17] SATELLITE MEASUREMENTS OF AEROSOL MASS AND TRANSPORT
    FRASER, RS
    KAUFMAN, YJ
    MAHONEY, RL
    [J]. ATMOSPHERIC ENVIRONMENT, 1984, 18 (12) : 2577 - 2584
  • [18] HANEL G, 1976, ADV GEOPHYS, V11, P968
  • [19] LIGHT-SCATTERING IN PLANETARY ATMOSPHERES
    HANSEN, JE
    TRAVIS, LD
    [J]. SPACE SCIENCE REVIEWS, 1974, 16 (04) : 527 - 610
  • [20] Chemical apportionment of aerosol column optical depth off the mid-Atlantic coast of the United States
    Hegg, DA
    Livingston, J
    Hobbs, PV
    Novakov, T
    Russell, P
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1997, 102 (D21) : 25293 - 25303