Comparison of AdaBoost and Support Vector Machines for Detecting Alzheimer's Disease Through Automated Hippocampal Segmentation

被引:160
作者
Morra, Jonathan H. [1 ]
Tu, Zhuowen [1 ]
Apostolova, Liana G. [1 ]
Green, Amity E. [1 ]
Toga, Arthur W. [1 ]
Thompson, Paul M. [1 ]
机构
[1] Univ Calif Los Angeles, Dept Neurol, Lab Neuro Imaging, Los Angeles, CA 90095 USA
关键词
AdaBoost; Alzheimer's disease; hippocampal segmentation; support vector machines (SVMs); surface modeling; MILD COGNITIVE IMPAIRMENT; TEMPORAL-LOBE EPILEPSY; ATROPHY; SHAPE; REGISTRATION; MRI; CLASSIFICATION; ABNORMALITIES; DEMENTIA; MAPS;
D O I
10.1109/TMI.2009.2021941
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We compared four automated methods for hippocampal segmentation using different machine learning algorithms: 1) hierarchical AdaBoost, 2) support vector machines (SVM) with manual feature selection, 3) hierarchical SVM with automated feature selection (Ada-SVM), and 4) a publicly available brain segmentation package (FreeSurfer). We trained our approaches using T1-weighted brain MRIs from 30 subjects [10 normal elderly, 10 mild cognitive impairment (MCI), and 10 Alzheimer's disease (AD)], and tested on an independent set of 40 subjects (20 normal, 20 AD). Manually segmented gold standard hippocampal tracings were available for all subjects (training and testing). We assessed each approach's accuracy relative to manual segmentations, and its power to map AD effects. We then converted the segmentations into parametric surfaces to map disease effects on anatomy. After surface reconstruction, we computed significance maps, and overall corrected p-values, for the 3-D profile of shape differences between AD and normal subjects. Our AdaBoost and Ada-SVM segmentations compared favorably with the manual segmentations and detected disease effects as well as FreeSurfer on the data tested. Cumulative p-value plots, in conjunction with the false discovery rate method, were used to examine the power of each method to detect correlations with diagnosis and cognitive scores. We also evaluated how segmentation accuracy depended on the size of the training set, providing practical information for future users of this technique.
引用
收藏
页码:30 / 43
页数:14
相关论文
共 72 条
[21]   Dynamic mapping of normal human hippocampal development [J].
Gogtay, Nitin ;
Nugent, Tom F., III ;
Herman, David H. ;
Ordonez, Anna ;
Greenstein, Deanna ;
Hayashi, Kiralee M. ;
Clasen, Liv ;
Toga, Arthur W. ;
Giedd, Jay N. ;
Rapoport, Judith L. ;
Thompson, Paul M. .
HIPPOCAMPUS, 2006, 16 (08) :664-672
[22]   Detection and analysis of statistical differences in anatomical shape [J].
Golland, P ;
Grimson, WEL ;
Shenton, ME ;
Kikinis, R .
MEDICAL IMAGE ANALYSIS, 2005, 9 (01) :69-86
[23]  
Gutman B, 2006, INT C PATT RECOG, P964
[24]   Automatic detection and quantification of hippocampal atrophy on MRI in temporal lobe epilepsy: A proof-of-principle study [J].
Hammers, Alexander ;
Heckemann, Rolf ;
Koepp, Matthias J. ;
Duncan, John S. ;
Hajnal, Jo V. ;
Rueckert, Daniel ;
Alabar, Paul .
NEUROIMAGE, 2007, 36 (01) :38-47
[25]  
Harry Blum, 1967, Models for the perception of speech and visual form, P362
[26]   Mesial temporal sclerosis and temporal lobe epilepsy: MR imaging deformation-based segmentation of the hippocampus in five patients [J].
Hogan, RE ;
Mark, KE ;
Wang, L ;
Joshi, S ;
Miller, MI ;
Bucholz, RD .
RADIOLOGY, 2000, 216 (01) :291-297
[27]   The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods [J].
Jack, Clifford R., Jr. ;
Bernstein, Matt A. ;
Fox, Nick C. ;
Thompson, Paul ;
Alexander, Gene ;
Harvey, Danielle ;
Borowski, Bret ;
Britson, Paula J. ;
Whitwell, Jennifer L. ;
Ward, Chadwick ;
Dale, Anders M. ;
Felmlee, Joel P. ;
Gunter, Jeffrey L. ;
Hill, Derek L. G. ;
Killiany, Ron ;
Schuff, Norbert ;
Fox-Bosetti, Sabrina ;
Lin, Chen ;
Studholme, Colin ;
DeCarli, Charles S. ;
Krueger, Gunnar ;
Ward, Heidi A. ;
Metzger, Gregory J. ;
Scott, Katherine T. ;
Mallozzi, Richard ;
Blezek, Daniel ;
Levy, Joshua ;
Debbins, Josef P. ;
Fleisher, Adam S. ;
Albert, Marilyn ;
Green, Robert ;
Bartzokis, George ;
Glover, Gary ;
Mugler, John ;
Weiner, Michael W. .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2008, 27 (04) :685-691
[28]   Support vector machines for temporal classification of block design fMRI data [J].
LaConte, S ;
Strother, S ;
Cherkassky, V ;
Anderson, J ;
Hu, XP .
NEUROIMAGE, 2005, 26 (02) :317-329
[29]   Enhanced signal detection in neuroimaging by means of regional control of the global false discovery rate [J].
Langers, Dave R. M. ;
Jansen, Jacobus F. A. ;
Backes, Walter H. .
NEUROIMAGE, 2007, 38 (01) :43-56
[30]  
Lao ZQ, 2006, I S BIOMED IMAGING, P307