EXPLOITING SPATIAL DEPENDENCE TO IMPROVE MEASUREMENT OF NEIGHBORHOOD SOCIAL PROCESSES

被引:45
作者
Savitz, Natalya Verbitsky [1 ]
Raudenbush, Stephen W. [2 ]
机构
[1] Math Policy Res Inc, Washington, DC 20024 USA
[2] Univ Chicago, Chicago, IL 60637 USA
来源
SOCIOLOGICAL METHODOLOGY 2009, VOL 39 | 2009年 / 39卷
关键词
EMPIRICAL BAYES ESTIMATION; COLLECTIVE EFFICACY; VIOLENT CRIME; MULTILEVEL; DYNAMICS; MODELS; REGRESSIONS; INFERENCE; DISORDER; HEALTH;
D O I
10.1111/j.1467-9531.2009.01221.x
中图分类号
C [社会科学总论];
学科分类号
03 ; 0303 ;
摘要
A number of recent studies have used surveys of neighborhood informants and direct observation of city streets to assess aspects of community life such as collective efficacy, the density of kin networks, and social disorder Raudenbush and Sampson (1999a) have coined the term "ecometrics" to denote the study of the reliability and validity of such assessments. Random errors of measurement will attenuate the associations between these assessments and key outcomes. To address this problem, some studies have used empirical Bayes methods to reduce such biases, while assuming that neighborhood random effects are statistically independent. In this paper we show that the precision and validity of ecometric measures can be considerably improved by exploiting the spatial dependence of neighborhood social processes within the framework of empirical Bayes shrinkage. We compare three estimators of a neighborhood social process: the ordinary least squares estimator (OLS), an empirical Bayes estimator based on the independence assumption (EBE), and an empirical Bayes estimator that exploits spatial dependence (EBS). Under our model assumptions, EBS performs better than EBE and OLS in terms of expected mean squared error loss. The benefits of EBS relative to EBE and OLS depend on the magnitude of spatial dependence, the degree of neighborhood heterogeneity, as well as neighborhood's sample size. A cross-validation study using the original 1995 data from the Project on Human Development in Chicago Neighborhoods and a replication of that survey in 2002 show that the empirical benefits of EBS approximate those expected under our model assumptions; EBS is more internally consistent and temporally stable and demonstrates higher concurrent and predictive validity. A fully Bayes approach has the same properties as does the empirical Bayes approach, but it is preferable when the number of neighborhoods is small.
引用
收藏
页码:151 / 183
页数:33
相关论文
共 52 条
[31]   Neighborhood inequality, collective efficacy, and the spatial dynamics of urban violence [J].
Morenoff, JD ;
Sampson, RJ ;
Raudenbush, SW .
CRIMINOLOGY, 2001, 39 (03) :517-559
[32]   Violent crime and the spatial dynamics of neighborhood transition: Chicago, 1970-1990 [J].
Morenoff, JD ;
Sampson, RJ .
SOCIAL FORCES, 1997, 76 (01) :31-64
[33]   Neighborhood mechanisms and the spatial dynamics of birth weight [J].
Morenoff, JD .
AMERICAN JOURNAL OF SOCIOLOGY, 2003, 108 (05) :976-1017
[34]  
MORRIS CN, 1983, J AM STAT ASSOC, V78, P47, DOI 10.2307/2287098
[35]   ESTIMATING MULTIPLE REGRESSIONS IN M GROUPS - CROSS-VALIDATION STUDY [J].
NOVICK, MR ;
THAYER, DT ;
COLE, NS ;
JACKSON, PH .
BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 1972, 25 (MAY) :33-&
[36]   The (mis)estimation of neighborhood effects: causal inference for a practicable social epidemiology [J].
Oakes, JM .
SOCIAL SCIENCE & MEDICINE, 2004, 58 (10) :1929-1952
[37]   ESTIMATION METHODS FOR MODELS OF SPATIAL INTERACTION [J].
ORD, K .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1975, 70 (349) :120-126
[38]  
Raudenbush S. W., 2001, HIERARCHICAL LINEAR
[39]   A MULTILEVEL, MULTIVARIATE MODEL FOR STUDYING SCHOOL CLIMATE WITH ESTIMATION VIA THE EM ALGORITHM AND APPLICATION TO UNITED-STATES HIGH-SCHOOL DATA [J].
RAUDENBUSH, SW ;
ROWAN, B ;
KANG, SJ .
JOURNAL OF EDUCATIONAL STATISTICS, 1991, 16 (04) :295-330
[40]   Assessing direct and indirect effects in multilevel designs with latent variables [J].
Raudenbush, SW ;
Sampson, R .
SOCIOLOGICAL METHODS & RESEARCH, 1999, 28 (02) :123-153