The stability of electricity prices: Estimation and inference of the Lyapunov exponents

被引:11
作者
Bask, Mikael
Liu, Tung
Widerberg, Anna
机构
[1] Bank Finland, Monetary Policy & Res Dept, FIN-00101 Helsinki, Finland
[2] Ball State Univ, Dept Econ, Muncie, IN 47306 USA
[3] Univ Gothenburg, Dept Econ, SE-40530 Gothenburg, Sweden
关键词
feedforward neural network; Lyapunov exponents; Nord Pool; spot electricity prices; stochastic dynamic system;
D O I
10.1016/j.physa.2006.10.016
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The aim of this paper is to illustrate how the stability of a stochastic dynamic system is measured using the Lyapunov exponents. Specifically, we use a feedforward neural network to estimate these exponents as well as asymptotic results for this estimator to test for unstable (chaotic) dynamics. The data set used is spot electricity prices from the Nordic power exchange market, Nord Pool, and the dynamic system that generates these prices appi.-ars to be chaotic in one case since the null hypothesis of a non-positive largest Lyapunov exponent is rejected at the 1 per cent level. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:565 / 572
页数:8
相关论文
共 17 条
[1]   HETEROSKEDASTICITY AND AUTOCORRELATION CONSISTENT COVARIANCE-MATRIX ESTIMATION [J].
ANDREWS, DWK .
ECONOMETRICA, 1991, 59 (03) :817-858
[2]   EMU and the stability and volatility of foreign exchange: Some empirical evidence [J].
Bask, M ;
de Luna, X .
CHAOS SOLITONS & FRACTALS, 2005, 25 (03) :737-750
[3]  
Bask M, 2002, STUD NONLINEAR DYN E, V6
[4]   LYAPUNOV EXPONENTS AS A NONPARAMETRIC DIAGNOSTIC FOR STABILITY ANALYSIS [J].
DECHERT, WD ;
GENCAY, R .
JOURNAL OF APPLIED ECONOMETRICS, 1992, 7 :S41-S60
[5]   Is the largest Lyapunov exponent preserved in embedded dynamics? [J].
Dechert, WD ;
Gençay, R .
PHYSICS LETTERS A, 2000, 276 (1-4) :59-64
[6]   The topological invariance of Lyapunov exponents in embedded dynamics [J].
Dechert, WD ;
Gencay, R .
PHYSICA D, 1996, 90 (1-2) :40-55
[7]   AN ALGORITHM FOR THE N-LYAPUNOV EXPONENTS OF AN N-DIMENSIONAL UNKNOWN DYNAMIC SYSTEM [J].
GENCAY, R ;
DECHERT, WD .
PHYSICA D, 1992, 59 (1-3) :142-157
[8]  
GENCAY R, 1996, STUD NONLINEAR DYN E, V1
[9]  
Guckenheimer J., 1983, APPL MATH SCI, V42, DOI DOI 10.1115/1.3167759
[10]   UNIVERSAL APPROXIMATION OF AN UNKNOWN MAPPING AND ITS DERIVATIVES USING MULTILAYER FEEDFORWARD NETWORKS [J].
HORNIK, K ;
STINCHCOMBE, M ;
WHITE, H .
NEURAL NETWORKS, 1990, 3 (05) :551-560