Abatement of toluene from gas streams via ferro-electric packed bed dielectric barrier discharge plasma

被引:64
作者
Liang, Wenjun [1 ]
Li, Jian [1 ]
Li, Jie [1 ]
Jin, Yuquan [1 ]
机构
[1] Beijing Univ Technol, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
关键词
Dielectric barrier discharge plasma; Ferro-electric packed bed; Toluene; Ozone; Specific energy density; Energy yield; VOLATILE ORGANIC-COMPOUNDS; DECOMPOSITION; REACTOR;
D O I
10.1016/j.jhazmat.2009.05.019
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Destruction of gaseous toluene via ferro-electric packed bed dielectric barrier discharge plasma in a coaxial cylindrical reactor was carried out at atmospheric pressure and room temperature. The difference among three kinds of reactors was compared in terms of specific energy density (SED), energy yield (EY), toluene decomposition. In order to optimize the geometry of the reactor, the removal efficiency of toluene was compared for various inner electrode diameters. In addition, qualitative analysis on by-products and particular discussion on toluene abatement mechanisms were also presented. It has been found that ferro-electric packed bed DBD reactor could effectively decompose toluene. Toluene removal efficiency enhanced with increasing SED. With respect to toluene conversion, 1.62 mm electrode appeared to be superior to 1.06 mm electrodes. BaTiO3 reactor had the highest toluene removal efficiency among the reactors. For NaNO2 reactor, the highest EY could reach 17.0 mg/kWh to a certain extent. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:633 / 638
页数:6
相关论文
共 16 条
[1]   Decomposition of toluene and acetone in packed dielectric barrier discharge reactors [J].
Chang, CL ;
Lin, TS .
PLASMA CHEMISTRY AND PLASMA PROCESSING, 2005, 25 (03) :227-243
[2]   CORONA DISCHARGE PROCESSES [J].
CHANG, JS ;
LAWLESS, PA ;
YAMAMOTO, T .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 1991, 19 (06) :1152-1166
[3]   Review of packed-bed plasma reactor for ozone generation and air pollution control [J].
Chen, Hsin Liang ;
Lee, How Ming ;
Chen, Shiaw Huei ;
Chang, Moo Been .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2008, 47 (07) :2122-2130
[4]   NONEQUILIBRIUM VOLUME PLASMA CHEMICAL-PROCESSING [J].
ELIASSON, B ;
KOGELSCHATZ, U .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 1991, 19 (06) :1063-1077
[5]   Mechanisms for formation of inorganic byproducts in plasma chemical processing of hazardous air pollutants [J].
Futamura, S ;
Zhang, AH ;
Yamamoto, T .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 1999, 35 (04) :760-766
[6]   Involvement of catalyst materials in nonthermal plasma chemical processing of hazardous air pollutants [J].
Futamura, S ;
Zhang, AH ;
Einaga, H ;
Kabashima, H .
CATALYSIS TODAY, 2002, 72 (3-4) :259-265
[7]   The dependence of nonthermal plasma behavior of VOCs on their chemical structures [J].
Futamura, S ;
Zhang, AH ;
Yamamoto, T .
JOURNAL OF ELECTROSTATICS, 1997, 42 (1-2) :51-62
[8]   Comparative assessment of different nonthermal plasma reactors on energy efficiency and aerosol formation from the decomposition of gas-phase benzene [J].
Kim, HH ;
Kobara, H ;
Ogata, A ;
Futamura, S .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2005, 41 (01) :206-214
[9]   Destruction of volatile organic compounds used in a semiconductor industry by a capillary tube discharge reactor [J].
Kohno, H ;
Berezin, AA ;
Chang, JS ;
Tamura, M ;
Yamamoto, T ;
Shibuya, A ;
Hondo, S .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 1998, 34 (05) :953-966
[10]   Plasma-assisted catalysis for volatile organic compounds abatement [J].
Magureanu, M ;
Mandache, NB ;
Eloy, P ;
Gaigneaux, EM ;
Parvulescu, VI .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2005, 61 (1-2) :12-20