n-SIFT: n-Dimensional Scale Invariant Feature Transform

被引:120
作者
Cheung, Warren [1 ]
Hamarneh, Ghassan [2 ]
机构
[1] Univ British Columbia, Bioinformat Program, Ctr Mol Med & Therapeut, Vancouver, BC V5Z 4H4, Canada
[2] Simon Fraser Univ, Med Image Anal Lab, Burnaby, BC V5A 1S6, Canada
关键词
Biomedical image processing; difference of Gaussian; feature extraction; image matching; medical images; scale invariant feature transform (SIFT);
D O I
10.1109/TIP.2009.2024578
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose the n-dimensional scale invariant feature transform (n-SIFT) method for extracting and matching salient features from scalar images of arbitrary dimensionality, and compare this method's performance to other related features. The proposed features extend the concepts used for 2-D scalar images in the computer vision SIFT technique for extracting and matching distinctive scale invariant features. We apply the features to images of arbitrary dimensionality through the use of hyperspherical coordinates for gradients and multidimensional histograms to create the feature vectors. We analyze the performance of a fully automated multimodal medical image matching technique based on these features, and successfully apply the technique to determine accurate feature point correspondence between pairs of 3-D MRI images and dynamic 3D + time CT data.
引用
收藏
页码:2012 / 2021
页数:10
相关论文
共 32 条
[11]  
Harris C., 1988, Proceedings of the 4th Alvey Vision Conference, V15, P146
[12]  
HOLMES DR, 2005, MICCAI OP SOURC WORK
[13]  
Ke Y, 2004, PROC CVPR IEEE, P506
[14]   DETECTING SALIENT BLOB-LIKE IMAGE STRUCTURES AND THEIR SCALES WITH A SCALE-SPACE PRIMAL SKETCH - A METHOD FOR FOCUS-OF-ATTENTION [J].
LINDEBERG, T .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1993, 11 (03) :283-318
[15]   Feature detection with automatic scale selection [J].
Lindeberg, T .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1998, 30 (02) :79-116
[16]  
Lowe D G., 1999, P 7 IEEE INT C COMP, Vvol 2, P1150, DOI [10.1109/ICCV.1999.790410, DOI 10.1109/ICCV.1999.790410]
[17]   Distinctive image features from scale-invariant keypoints [J].
Lowe, DG .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 60 (02) :91-110
[18]  
Matas J., 2002, Electronic Proceedings of the 13th British Machine Vision Conference, P384
[19]  
Mikolajczyk K, 2003, PROC CVPR IEEE, P257
[20]  
Moradi M, 2005, INT CONGR SER, V1281, P1292, DOI 10.1016/j.ics.2005.03.042