Whole lyophilised cells of Rhodococcus ruber DSM 44541 were employed for the oxidative kinetic resolution of sec-alcohols using acetone as hydrogen acceptor. The enantioselectivity of this process could be controlled effectively by introducing C-C multiple bonds into substrates, which were inefficiently recognised, in particular short-chain (omega-1)-alcohols and (omega-2)-analogs. Thus, the enantioselectivities of rac-2-pentanol (E= 16.8) and rac-3-octanol (E= 13.3) were significantly improved by introducing a C=C bond adjacent to the alcohol moiety to give racemic (E)-pent-3-en-2-ol and 4-(E)-octen-3-ol, which were resolved with excellent selectivities (E >100 and 50, respectively). In addition, it was found that high stereodifferentiation between the E- and Z-configured double bonds occurred, as the corresponding (Z)-isomers were not converted. Similar selectivity-enhancing effects were observed with acetylenic analogs. (C) 2003 Elsevier Science Ltd. All rights reserved.