Algorithm 862: MATLAB tensor classes for fast algorithm prototyping

被引:304
作者
Bader, Brett W.
Kolda, Tamara G.
机构
[1] Sandia Natl Labs, Albuquerque, NM 87185 USA
[2] Sandia Natl Labs, Livermore, CA 94551 USA
来源
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE | 2006年 / 32卷 / 04期
关键词
algorithms; higher-order tensors; multilinear algebra; N-way arrays; MATLAB;
D O I
10.1145/1186785.1186794
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Tensors (also known as multidimensional arrays or N-way arrays) are used in a variety of applications ranging from chemometrics to psychometrics. We describe four MATLAB classes for tensor manipulations that can be used for fast algorithm prototyping. The tensor class extends the functionality of MATLAB's multidimensional arrays by supporting additional operations such as tensor multiplication. The tensor-as-matrix class supports the "matricization" of a tensor, that is, the conversion of a tensor to a matrix (and vice versa), a commonly used operation in many algorithms. Two additional classes represent tensors stored in decomposed formats: cp_tensor and tucker-tensor. We describe all of these classes and then demonstrate their use by showing how to implement several tensor algorithms that have appeared in the literature.
引用
收藏
页码:635 / 653
页数:19
相关论文
共 16 条
  • [1] The N-way Toolbox for MATLAB
    Andersson, CA
    Bro, R
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2000, 52 (01) : 1 - 4
  • [2] [Anonymous], 2004, MULTIWAY ANAL APPL C
  • [3] ANALYSIS OF INDIVIDUAL DIFFERENCES IN MULTIDIMENSIONAL SCALING VIA AN N-WAY GENERALIZATION OF ECKART-YOUNG DECOMPOSITION
    CARROLL, JD
    CHANG, JJ
    [J]. PSYCHOMETRIKA, 1970, 35 (03) : 283 - &
  • [4] Chen B., 2002, APPL SIGNAL PROCESSI, V5, P487
  • [5] Comon P, 2002, INST MATH C, P1
  • [6] A multilinear singular value decomposition
    De Lathauwer, L
    De Moor, B
    Vandewalle, J
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) : 1253 - 1278
  • [7] On the best rank-1 and rank-(R1,R2,...,RN) approximation of higher-order tensors
    De Lathauwer, L
    De Moor, B
    Vandewalle, J
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) : 1324 - 1342
  • [8] Harshman R. A., 1970, UCLA Work. Papers Phonetics, V16, P1, DOI DOI 10.1134/S0036023613040165
  • [9] An index formalism that generalizes the capabilities of matrix notation and algebra to n-way arrays
    Harshman, RA
    [J]. JOURNAL OF CHEMOMETRICS, 2001, 15 (09) : 689 - 714
  • [10] Kiers HAL, 2000, J CHEMOMETR, V14, P105, DOI 10.1002/1099-128X(200005/06)14:3<105::AID-CEM582>3.0.CO