Existence for an unsteady fluid-structure interaction problem

被引:105
作者
Grandmont, C [1 ]
Maday, Y
机构
[1] Univ Paris 09, CEREMADE, F-75775 Paris 16, France
[2] Univ Paris 11, Lab ASCI, F-91405 Orsay, France
[3] Off Natl Etud & Rech Aerosp, F-92322 Chatillon, France
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2000年 / 34卷 / 03期
关键词
Navier-Stokes; fluid structure interaction;
D O I
10.1051/m2an:2000159
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the well-posedness of an unsteady fluid-structure interaction problem. We consider a viscous incompressible flow, which is modelled by the Navier-Stokes equations. The structure is a collection of rigid moving bodies. The fluid domain depends on time and is defined by the position of the structure, itself resulting from a stress distribution coming from the fluid. The problem is then nonlinear and the equations we deal with are coupled. We prove its local solvability in time through two fixed point procedures. Mathematics Subject Classification. 76D05, 35Q30, 73K70.
引用
收藏
页码:609 / 636
页数:28
相关论文
共 19 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]   SMALL-TIME EXISTENCE FOR THE NAVIER-STOKES EQUATIONS WITH A FREE-SURFACE [J].
ALLAIN, G .
APPLIED MATHEMATICS AND OPTIMIZATION, 1987, 16 (01) :37-50
[3]  
ALLAIN G, 1983, THESIS U PARIS 6 FRA
[5]  
Brezis H., 1999, Analyse fonctionnelle: Theorie et applications
[6]  
CONCA C, 1999, C R ACAD SCI PARIS 1, V32, P473
[7]   Existence of weak solutions for the motion of rigid bodies in a viscous fluid [J].
Desjardins, B ;
Esteban, MJ .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 146 (01) :59-71
[8]  
DESJARDINS B, IN PRESS COMM PARTIA
[9]  
Duvaut G., 1990, Mecanique des Milieux Continus
[10]  
Girault V., 2012, FINITE ELEMENT METHO, V5