Existence of weak solutions for the motion of rigid bodies in a viscous fluid

被引:177
作者
Desjardins, B
Esteban, MJ
机构
[1] Ecole Normale Super, Dept Math & Informat, F-75005 Paris, France
[2] Univ Paris 09, CEREMADE, UMR 7534, F-75775 Paris 16, France
关键词
Boundary Condition; Weak Solution; Rigid Body; Finite Number; Bounded Domain;
D O I
10.1007/s002050050136
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the evolution of a finite number of rigid bodies within a viscous incompressible fluid in a bounded domain of R-d (d = 2 or 3) With Dirichlet boundary conditions. By introducing an appropriate weak formulation for the complete problem we prove existence of solutions for initial velocities in H-0(1)(Ohm). In the absence of collisions, solutions exist for all time in dimension 2, whereas in dimension 3 the lifespan of solutions is infinite only for small enough data.
引用
收藏
页码:59 / 71
页数:13
相关论文
共 14 条
[1]   Regularity results for two-dimensional flows of multiphase viscous fluids [J].
Desjardins, B .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 137 (02) :135-158
[2]  
Desjardins B., 1997, Differ. Int. Equ, V10, P577
[3]  
DESJARDINS B, WEAK SOLUTIONS FLUID
[4]  
Desjardins B., 1997, DIFFER INTEGRAL EQU, V10, P587
[5]   ORDINARY DIFFERENTIAL-EQUATIONS, TRANSPORT-THEORY AND SOBOLEV SPACES [J].
DIPERNA, RJ ;
LIONS, PL .
INVENTIONES MATHEMATICAE, 1989, 98 (03) :511-547
[6]  
ERRATE D, 1994, CR ACAD SCI I-MATH, V318, P275
[7]  
ERRATE D, 1994, THESIS U PARIS 6
[8]   On the global existence and convergence to steady state Navier-Stokes flow past an obstacle that is started from rest [J].
Galdi, GP ;
Heywood, JG ;
Shibata, Y .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 138 (04) :307-318
[9]  
Gerbeau J., 1997, Advances in Differential Equations, V2, P427
[10]   Existence for a two-dimensional, unsteady fluid-structure interaction problem [J].
Grandmont, C ;
Maday, Y .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (04) :525-530