The symbiotic ion channel homolog DMI1 is localized in the nuclear membrane of Medicago truncatula roots

被引:67
作者
Riely, Brendan K.
Lougnon, Geraldine
Ane, Jean-Michel
Cook, Douglas R.
机构
[1] Univ Calif Davis, Dept Plant Pathol, Davis, CA 95616 USA
[2] Univ Wisconsin, Dept Agron, Madison, WI 53706 USA
关键词
nucleus; Medicago truncatula; nodulation; ion channel; nuclear localization signal; symbiosis;
D O I
10.1111/j.1365-313X.2006.02957.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Legumes utilize a common signaling pathway to form symbiotic associations both with rhizobial bacteria and arbuscular mycorrhizal fungi. The perception of microbial signals is believed to take place at the plasma membrane, activating a cascade that converges on the nucleus where transcriptional reprogramming facilitates the symbioses. Forward genetic strategies have identified genes in this signaling pathway including Medicago truncatula DMI1 (Doesn't Make Infections 1) that encodes a putative ion channel. Although the DMI1 homologs from Lotus japonicus, CASTOR and POLLUX, were recently reported to be localized in plastids, we report here that a functional DMI1::GFP fusion is localized to the nuclear envelope in M. truncatula roots when expressed both from a constitutive 35S promoter and from a native DMI1 promoter. Localization may be mediated in part by sequences located within the amino-terminus of DMI1. This region of DMI1 is required for symbiotic signal transcluction, and its replacement with a bona fide plastid transit peptide from the glutamine synthetase 2 gene does not restore DMI1 function. These new data place DMI1 in the nuclear envelope in close proximity to the origin of Nod-factor-induced calcium spiking.
引用
收藏
页码:208 / 216
页数:9
相关论文
共 41 条
[1]   Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes [J].
Ane, JM ;
Kiss, GB ;
Riely, BK ;
Penmetsa, RV ;
Oldroyd, GED ;
Ayax, C ;
Lévy, J ;
Debellé, F ;
Baek, JM ;
Kalo, P ;
Rosenberg, C ;
Roe, BA ;
Long, SR ;
Dénarié, J ;
Cook, DR .
SCIENCE, 2004, 303 (5662) :1364-1367
[2]   Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations [J].
Boisson-Dernier, A ;
Chabaud, M ;
Garcia, F ;
Bécard, G ;
Rosenberg, C ;
Barker, DG .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2001, 14 (06) :695-700
[3]   Two different but converging messenger pathways to intracellular Ca2+ release:: the roles of nicotinic acid adenine dinucleotide phosphate, cyclic ADP-ribose and inositol trisphosphate [J].
Cancela, JM ;
Gerasimenko, OV ;
Gerasimenko, JV ;
Tepikin, AV ;
Petersen, OH .
EMBO JOURNAL, 2000, 19 (11) :2549-2557
[4]   Four genes of Medicago truncatula controlling components of a nod factor transduction pathway [J].
Catoira, R ;
Galera, C ;
de Billy, F ;
Penmetsa, RV ;
Journet, EP ;
Maillet, F ;
Rosenberg, C ;
Cook, D ;
Gough, C ;
Dénarié, J .
PLANT CELL, 2000, 12 (09) :1647-1665
[5]   Pharmacological evidence that multiple phospholipid signaling pathways link rhizobium nodulation factor perception in Medicago truncatula root hairs to intracellular responses, including Ca2+ spiking and specific ENOD gene expression [J].
Charron, D ;
Pingret, JL ;
Chabaud, M ;
Journet, EP ;
Barker, DG .
PLANT PHYSIOLOGY, 2004, 136 (03) :3582-3593
[6]   Nod factor structures, responses, and perception during initiation of nodule development [J].
D'Haeze, W ;
Holsters, M .
GLYCOBIOLOGY, 2002, 12 (06) :79R-105R
[7]   Soluble, highly fluorescent variants of green fluorescent protein (GFP) for use in higher plants [J].
Davis, SJ ;
Vierstra, RD .
PLANT MOLECULAR BIOLOGY, 1998, 36 (04) :521-528
[8]   Nod factor and elicitors activate different phospholipid signaling pathways in suspension-cultured alfalfa cells [J].
den Hartog, M ;
Verhoef, N ;
Munnik, T .
PLANT PHYSIOLOGY, 2003, 132 (01) :311-317
[9]   Nod factor-induced phosphatidic acid and diacylglycerol pyrophosphate formation: a role for phospholipase C and D in root hair deformation [J].
den Hartog, M ;
Musgrave, A ;
Munnik, T .
PLANT JOURNAL, 2001, 25 (01) :55-65
[10]   Calcium spiking in plant root hairs responding to Rhizobium nodulation signals [J].
Ehrhardt, DW ;
Wais, R ;
Long, SR .
CELL, 1996, 85 (05) :673-681