Microneedles and other physical methods for overcoming the stratum corneum barrier for cutaneous gene therapy

被引:58
作者
Coulman, Sion [1 ]
Allender, Chris [1 ]
Birchall, James [1 ]
机构
[1] Cardiff Univ, Welsh Sch Pharm, Gene Delivery Res Grp, Cardiff CF10 3XF, Wales
来源
CRITICAL REVIEWS IN THERAPEUTIC DRUG CARRIER SYSTEMS | 2006年 / 23卷 / 03期
关键词
microneedles; skin; gene delivery; gene therapy; stratum corneum;
D O I
10.1615/CritRevTherDrugCarrierSyst.v23.i3.20
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The outermost layer of skin, the epidermis, has developed formidable physical and immunological barrier properties that prevent infiltration of deleterious chemicals and pathogens. Consequently, transdermal delivery of medicaments is currently restricted to a limited number of low molecular weight drugs. As a corollary, there has been significant recent interest in providing strategies that disrupt or circumvent the principal physical barrier, the stratum corneum, for the efficient cutaneous delivery of macromolecular and nucleic acid based therapeutics. These strategies include: electrical methods, intradermal injection, follicular delivery, particle acceleration, laser ablation, radiofrequency ablation, microscission, and microneedles. The application of microfabricated microneedle arrays to skin creates transient pathways to enable transcutaneous delivery of drugs and macromolecules. Microneedle use is simple, pain-free, and causes no bleeding, with further advantages of convenient manufacture, distribution, and disposal. To date, microneedles have been shown to deliver drug, peptide, antigen, and DNA efficiently through skin. Robust and efficient microneedle designs and compositions can be inserted into the skin without fracture. Further progress in microneedle array design, microneedle application apparatus, and integrated formulation will confirm this methodology as a realistic clinical strategy for delivering a range of medicaments, including DNA, to and through skin.
引用
收藏
页码:205 / 258
页数:54
相关论文
共 223 条
[51]   Stratum corneum defensive functions: An integrated view [J].
Elias, PM .
JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2005, 125 (02) :183-200
[52]  
ELIAS PM, 1983, J INVEST DERMATOL, V80, pS44, DOI 10.1038/jid.1983.12
[53]   In vivo gene transfer to skin and wound by microseeding [J].
Eriksson, E ;
Yao, F ;
Svensjö, T ;
Winkler, T ;
Slama, J ;
Macklin, MD ;
Andree, C ;
McGregor, M ;
Hinshaw, V ;
Swain, WF .
JOURNAL OF SURGICAL RESEARCH, 1998, 78 (02) :85-91
[54]   Immunization via hair follicles by topical application of naked DNA to normal skin [J].
Fan, HR ;
Lin, Q ;
Morrissey, GR ;
Khavari, PA .
NATURE BIOTECHNOLOGY, 1999, 17 (09) :870-872
[55]   Transdermal delivery of macromolecules by erbium:YAG laser [J].
Fang, JY ;
Lee, WR ;
Shen, SC ;
Wang, HY ;
Fang, CL ;
Hu, CH .
JOURNAL OF CONTROLLED RELEASE, 2004, 100 (01) :75-85
[56]   Enhancement of topical 5-aminolaevulinic acid delivery by erbium:YAG laser and microdermabrasion:: a comparison with iontophoresis and electroporation [J].
Fang, JY ;
Lee, WR ;
Shen, SC ;
Fang, YP ;
Hu, CH .
BRITISH JOURNAL OF DERMATOLOGY, 2004, 151 (01) :132-140
[57]  
Fensterle J, 1999, J IMMUNOL, V163, P4510
[58]   Gene therapy approaches for epidermolysis bullosa [J].
Ferrari, S ;
Peregrini, G ;
Mavilio, F ;
De Luca, M .
CLINICS IN DERMATOLOGY, 2005, 23 (04) :430-436
[59]  
Foldvari Marianna, 2006, Current Drug Delivery, V3, P89, DOI 10.2174/156720106775197501
[60]   EPIDERMAL DIFFERENTIATION - THE BARE ESSENTIALS [J].
FUCHS, E .
JOURNAL OF CELL BIOLOGY, 1990, 111 (06) :2807-2814