Three-dimensional tissue engineering of hyaline cartilage:: Comparison of adult nasal and articular chondrocytes

被引:176
作者
Kafienah, W
Jakob, M
Démarteau, O
Frazer, A
Barker, MD
Martin, I
Hollander, AP [1 ]
机构
[1] Univ Bristol, Avon Orthopaed Ctr, Southmead Hosp, Bristol BS10 5NB, Avon, England
[2] Univ Basel, Dept Surg, Basel, Switzerland
[3] Univ Basel, Dept Res, Basel, Switzerland
[4] Univ Sheffield, Div Genom Med, Sheffield, S Yorkshire, England
来源
TISSUE ENGINEERING | 2002年 / 8卷 / 05期
关键词
D O I
10.1089/10763270260424178
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Adult chondrocytes are less chondrogenic than immature cells, yet it is likely that autologous cells from adult patients will be used clinically for cartilage engineering. The aim of this study was to compare the postexpansion chondrogenic potential of adult nasal and articular chondrocytes. Bovine or human chondrocytes were expanded in monolayer culture, seeded onto polyglycolic acid (PGA) scaffolds, and cultured for 40 days. Engineered cartilage constructs were processed for histological and quantitative analysis of the extracellular matrix and mRNA. Some engineered constructs were implanted in athymic mice for up to six additional weeks before analysis. Using adult bovine tissues as a cell source, nasal chondrocytes generated a matrix with significantly higher fractions of collagen type II and glycosaminoglycans as compared with articular chondrocytes. Human adult nasal chondrocytes proliferated approximately four times faster than human articular chondrocytes in monolayer culture, and had a markedly higher chondrogenic capacity, as assessed by the mRNA and protein analysis of in vitro-engineered constructs. Cartilage engineered from human nasal cells survived and grew during 6 weeks of implantation in vivo whereas articular cartilage constructs failed to survive. In conclusion, for adult patients nasal septum chondrocytes are a better cell source than articular chondrocytes for the in vitro engineering of autologous cartilage grafts. It remains to be established whether cartilage engineered from nasal cells can function effectively when implanted at an articular site.
引用
收藏
页码:817 / 826
页数:10
相关论文
共 38 条
[1]   MICROFILAMENT MODIFICATION BY DIHYDROCYTOCHALASIN-B CAUSES RETINOIC ACID-MODULATED CHONDROCYTES TO REEXPRESS THE DIFFERENTIATED COLLAGEN PHENOTYPE WITHOUT A CHANGE IN SHAPE [J].
BENYA, PD ;
BROWN, PD ;
PADILLA, SR .
JOURNAL OF CELL BIOLOGY, 1988, 106 (01) :161-170
[3]   DEDIFFERENTIATED CHONDROCYTES REEXPRESS THE DIFFERENTIATED COLLAGEN PHENOTYPE WHEN CULTURED IN AGAROSE GELS [J].
BENYA, PD ;
SHAFFER, JD .
CELL, 1982, 30 (01) :215-224
[4]   REEXPRESSION OF CARTILAGE-SPECIFIC GENES BY DEDIFFERENTIATED HUMAN ARTICULAR CHONDROCYTES CULTURED IN ALGINATE BEADS [J].
BONAVENTURE, J ;
KADHOM, N ;
COHENSOLAL, L ;
NG, KH ;
BOURGUIGNON, J ;
LASSELIN, C ;
FREISINGER, P .
EXPERIMENTAL CELL RESEARCH, 1994, 212 (01) :97-104
[5]   TREATMENT OF DEEP CARTILAGE DEFECTS IN THE KNEE WITH AUTOLOGOUS CHONDROCYTE TRANSPLANTATION [J].
BRITTBERG, M ;
LINDAHL, A ;
NILSSON, A ;
OHLSSON, C ;
ISAKSSON, O ;
PETERSON, L .
NEW ENGLAND JOURNAL OF MEDICINE, 1994, 331 (14) :889-895
[6]   ENGINEERING OF CARTILAGE TISSUE USING BIORESORBABLE POLYMER FLEECES AND PERFUSION CULTURE [J].
BUJIA, J ;
SITTINGER, M ;
MINUTH, WW ;
HAMMER, C ;
BURMESTER, G ;
KASTENBAUER, E .
ACTA OTO-LARYNGOLOGICA, 1995, 115 (02) :307-310
[7]  
BUSCHMANN MD, 1995, J CELL SCI, V108, P1497
[8]   Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear [J].
Cao, YL ;
Vacanti, JP ;
Paige, KT ;
Upton, J ;
Vacanti, CA .
PLASTIC AND RECONSTRUCTIVE SURGERY, 1997, 100 (02) :297-302
[9]  
Carver SE, 1999, BIOTECHNOL BIOENG, V62, P166, DOI 10.1002/(SICI)1097-0290(19990120)62:2<166::AID-BIT6>3.3.CO
[10]  
2-B