Mechanisms Shaping the Membranes of Cellular Organelles

被引:332
作者
Shibata, Yoko [1 ,2 ]
Hu, Junjie [3 ]
Kozlov, Michael M. [4 ]
Rapoport, Tom A. [1 ,2 ]
机构
[1] Harvard Univ, Sch Med, Howard Hughes Med Inst, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Dept Cell Biol, Boston, MA 02115 USA
[3] Nankai Univ, Coll Life Sci, Tianjin 300071, Peoples R China
[4] Tel Aviv Univ, Sackler Fac Med, Dept Physiol & Pharmacol, IL-69978 Tel Aviv, Israel
关键词
endoplasmic reticulum; mitochondria; caveolae; tubules; reticulons; dynamins; HEREDITARY SPASTIC PARAPLEGIA; DEPENDENT CONFORMATIONAL-CHANGES; TUBULAR ENDOPLASMIC-RETICULUM; NUCLEAR-PORE COMPLEXES; C-TERMINAL DOMAIN; MITOCHONDRIAL MORPHOLOGY; STRUCTURAL BASIS; BAR-DOMAIN; COPII VESICLE; ATP SYNTHASE;
D O I
10.1146/annurev.cellbio.042308.113324
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Cellular organelles have characteristic morphologies that arise as a result of different local membrane curvatures. A striking example is the endoplasmic reticulum (ER), which consists of ER tubules with high curvature in cross-section, peripheral ER sheets with little curvature except at their edges and the nuclear envelope with low curvature except where the nuclear pores are inserted. The ER may be shaped by several mechanisms. ER tubules are often generated through their association with the cytoskeleton and stabilized by two families of integral membrane proteins, the reticulons and DPI /Yop1p. Similar to how curvature is generated in budding vesicles, these proteins may use scaffolding and hydrophobic insertion mechanisms to shape the lipid bilayer into tubules. In addition, proteins of the dynamin family may deform the ER membrane to generate a tubular network. Mechanisms affecting local membrane curvature may also shape peripheral ER sheets and the nuclear envelope as well as mitochondria and caveolae.
引用
收藏
页码:329 / 354
页数:26
相关论文
共 145 条
[71]   POSSIBLE TEMPERATURE-DEPENDENT BLOCKAGE OF SYNAPTIC VESICLE RECYCLING INDUCED BY A SINGLE GENE MUTATION IN DROSOPHILA [J].
KOSAKA, T ;
IKEDA, K .
JOURNAL OF NEUROBIOLOGY, 1983, 14 (03) :207-225
[72]   Structural basis of mitochondrial tethering by mitofusin complexes [J].
Koshiba, T ;
Detmer, SA ;
Kaiser, JT ;
Chen, HC ;
McCaffery, JM ;
Chan, DC .
SCIENCE, 2004, 305 (5685) :858-862
[73]   A mechanism of protein-mediated fusion: Coupling between refolding of the influenza hemagglutinin and lipid rearrangements [J].
Kozlov, MM ;
Chernomordik, LV .
BIOPHYSICAL JOURNAL, 1998, 75 (03) :1384-1396
[74]   The protein coat in membrane fusion: Lessons from fission [J].
Kozlov, MM ;
Chernomordik, LV .
TRAFFIC, 2002, 3 (04) :256-267
[75]   Membrane fission: Model for intermediate structures [J].
Kozlovsky, Y ;
Kozlov, MM .
BIOPHYSICAL JOURNAL, 2003, 85 (01) :85-96
[76]   Arf1-GTP-induced tubule formation suggests a function of Arf family proteins in curvature acquisition at sites of vesicle budding [J].
Krauss, Michael ;
Jia, Jun-Yong ;
Roux, Aurelien ;
Beck, Rainer ;
Wieland, Felix T. ;
De Camilli, Pietro ;
Haucke, Volker .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (41) :27717-27723
[77]   Role of the membrane interface on the conformation of the caveolin scaffolding domain: A CD and NMR study [J].
Le Lan, Charlotte ;
Neumann, Jean-Michel ;
Jamin, Nadege .
FEBS LETTERS, 2006, 580 (22) :5301-5305
[78]   DYNAMIC BEHAVIOR OF ENDOPLASMIC-RETICULUM IN LIVING CELLS [J].
LEE, C ;
CHEN, LB .
CELL, 1988, 54 (01) :37-46
[79]   Sar1p N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle [J].
Lee, MCS ;
Orci, L ;
Hamamoto, S ;
Futai, E ;
Ravazzola, M ;
Schekman, R .
CELL, 2005, 122 (04) :605-617
[80]   Crystal structures of the BAR-PH and PTB domains of human APPL1 [J].
Li, Jiang ;
Mao, Xuming ;
Dong, Lily Q. ;
Liu, Feng ;
Tong, Liang .
STRUCTURE, 2007, 15 (05) :525-533