Fractional diffusion based on Riemann-Liouville fractional derivatives

被引:196
作者
Hilfer, R
机构
[1] Univ Stuttgart, ICA 1, D-70569 Stuttgart, Germany
[2] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany
关键词
D O I
10.1021/jp9936289
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A fractional diffusion equation based on Riemann-Liouville fractional derivatives is salved exactly. The initial values are given as fractional integrals. The solution is obtained in terms of H-functions. It differs from the known solution of fractional diffusion equations based on fractional integrals. The solution of fractional diffusion based on a Riemann-Liouville fractional time derivative does nor admit a probabilistic interpretation in contrast with fractional diffusion based on fractional integrals. While the fractional initial value problem is well defined and the solution finite at all times, its values for t --> 0 are divergent.
引用
收藏
页码:3914 / 3917
页数:4
相关论文
共 44 条
[1]  
[Anonymous], APPL FRACTIONAL CALC
[2]  
[Anonymous], 1968, HILBERTTRANSFORMATIO
[3]  
BERENS H, 1968, ACTA SCI MATH, V29, P93
[4]   Anomalous transport in random fracture networks [J].
Berkowitz, B ;
Scher, H .
PHYSICAL REVIEW LETTERS, 1997, 79 (20) :4038-4041
[5]  
Braaksma B.L.J., 1962, Compos. Math, V15, P239
[6]  
Butzer P. L., 1971, Reviews in Group Representation Theory, Part A (Pure and Applied Mathematics Series, VI
[7]   STATICS AND DYNAMICS OF POLYMERIC FRACTALS [J].
CATES, ME .
PHYSICAL REVIEW LETTERS, 1984, 53 (09) :926-929
[8]   ELECTRONIC-ENERGY TRANSFER ON FRACTALS [J].
EVEN, U ;
RADEMANN, K ;
JORTNER, J ;
MANOR, N ;
REISFELD, R .
PHYSICAL REVIEW LETTERS, 1984, 52 (24) :2164-2167
[9]  
Fox C., 1961, Trans Amer Math Soc, V98, P395, DOI [10.2307/1993339, DOI 10.2307/1993339]
[10]   FRACTIONAL MASTER-EQUATIONS AND FRACTAL TIME RANDOM-WALKS [J].
HILFER, R ;
ANTON, L .
PHYSICAL REVIEW E, 1995, 51 (02) :R848-R851