Random Fields-Union Intersection Tests for Detecting Functional Connectivity in EEG/MEG Imaging

被引:8
作者
Carbonell, Felix [1 ,2 ]
Worsley, Keith J. [1 ,2 ]
Trujillo-Barreto, Nelson J. [3 ]
Sotero, Roberto C. [3 ]
机构
[1] McGill Univ, Dept Math & Stat, Montreal, PQ, Canada
[2] McGill Univ, Montreal Neurol Inst, McConnell Brain Imaging Ctr, Montreal, PQ, Canada
[3] Cuban Neurosci Ctr, Havana, Cuba
基金
英国惠康基金;
关键词
connectivity; random fields; union-intersection; HIGH-RESOLUTION EEG; COMPONENT ANALYSIS; NEURAL SYSTEMS; BRAIN; FMRI; RECOGNITION; POTENTIALS;
D O I
10.1002/hbm.20685
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Electrophysiological (EEG/MEG) imaging challenges statistics by providing two views of the same underlying spatio-temporal brain activity: a topographic view (EEG/MEG) and tomographic view (EEG/MEG source reconstructions). It is a common practice that statistical parametric mapping (SPM) for these two Situations is developed separately. In particular, assessing statistical Significance of functional connectivity is a major challenge in these types Of Studies. This work introduces statistical tests for assessing simultaneously the significance of spatio-temporal correlation Structure between ERP/ERF components as well as that Of their generating Sources. We introduce a greatest root statistic as the multivariate test statistic for detecting functional connectivity between two sets of EEG/MFG measurements at a given time instant. We use some new results in random field theory to solve the multiple comparisons problem resulting from the correlated test statistics at each time instant. In general, our approach using the Union-intersection (UI) principle provides a framework for hypothesis testing about my linear combination of sensor data, which allows the analysis of the correlation structure of both topographic and tomographic views. The performance of the proposed method is illustrated with real ERP data obtained from a face recognition experiment. Hum Brain Mapp 30:2477-2486, 2009. (c) 2009 Wiley-Liss, Inc.
引用
收藏
页码:2477 / 2486
页数:10
相关论文
共 36 条
[1]   Comparison of different cortical connectivity estimators for high-resolution EEG recordings [J].
Astolfi, Laura ;
Cincotti, Febo ;
Mattia, Donatella ;
Marciani, M. Grazia ;
Baccala, Luiz A. ;
Fallani, Fabrizio de Vico ;
Salinari, Serenella ;
Ursino, Mauro ;
Zavaglia, Melissa ;
Ding, Lei ;
Edgar, J. Christopher ;
Miller, Gregory A. ;
He, Bin ;
Babiloni, Fabio .
HUMAN BRAIN MAPPING, 2007, 28 (02) :143-157
[2]  
AUNON JI, 1981, CRC CR REV BIOM ENG, V5, P323
[3]   Estimation of the cortical functional connectivity with the multimodal integration of high-resolution EEG and fMRI data by directed transfer function [J].
Babiloni, F ;
Cincotti, F ;
Babiloni, C ;
Carducci, F ;
Mattia, D ;
Astolfi, L ;
Basilisco, A ;
Rossini, PM ;
Ding, L ;
Ni, Y ;
Cheng, J ;
Christine, K ;
Sweeney, J ;
He, B .
NEUROIMAGE, 2005, 24 (01) :118-131
[4]   Comparison of two exploratory data analysis methods for fMRI: fuzzy clustering vs. principal component analysis [J].
Baumgartner, R ;
Ryner, L ;
Richter, W ;
Summers, R ;
Jarmasz, M ;
Somorjai, R .
MAGNETIC RESONANCE IMAGING, 2000, 18 (01) :89-94
[5]  
Cao J, 1999, ANN APPL PROBAB, V9, P1021
[6]   Random field-union intersection tests for EEG/MEG imaging [J].
Carbonell, F ;
Galán, L ;
Valdés, P ;
Worsley, K ;
Biscay, RJ ;
Díaz-Comas, L ;
Bobes, MA ;
Parra, M .
NEUROIMAGE, 2004, 22 (01) :268-276
[7]   AUTOMATIC 3D INTERSUBJECT REGISTRATION OF MR VOLUMETRIC DATA IN STANDARDIZED TALAIRACH SPACE [J].
COLLINS, DL ;
NEELIN, P ;
PETERS, TM ;
EVANS, AC .
JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 1994, 18 (02) :192-205
[8]   Evaluation of different measures of functional connectivity using a neural mass model [J].
David, O ;
Cosmelli, D ;
Friston, KJ .
NEUROIMAGE, 2004, 21 (02) :659-673
[9]  
EVANS AC, 1993, P IEEE NUCL SCI S ME, P192
[10]  
Friston Karl J., 1996, P363