Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI)

被引:863
作者
Dertinger, T. [1 ]
Colyer, R. [1 ]
Iyer, G. [1 ]
Weiss, S. [1 ,2 ,3 ]
Enderlein, J. [4 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Physiol, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA
[4] Univ Gottingen, Inst Phys 3, D-37073 Gottingen, Germany
基金
美国国家卫生研究院;
关键词
cumulants; fluorescence; quantum dots; superresolution microscopy; intermittency; DYNAMIC SPECKLE ILLUMINATION; FLUORESCENCE CORRELATION SPECTROSCOPY; DIFFRACTION RESOLUTION LIMIT; GROUND-STATE-DEPLETION; QUANTUM DOTS; STRUCTURED ILLUMINATION; LIVING CELLS; MICROSCOPY; INTERMITTENCY; LOCALIZATION;
D O I
10.1073/pnas.0907866106
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Super-resolution optical microscopy is a rapidly evolving area of fluorescence microscopy with a tremendous potential for impacting many fields of science. Several super-resolution methods have been developed over the last decade, all capable of overcoming the fundamental diffraction limit of light. We present here an approach for obtaining subdiffraction limit optical resolution in all three dimensions. This method relies on higher-order statistical analysis of temporal fluctuations (caused by fluorescence blinking/intermittency) recorded in a sequence of images (movie). We demonstrate a 5-fold improvement in spatial resolution by using a conventional wide-field microscope. This resolution enhancement is achieved in iterative discrete steps, which in turn allows the evaluation of images at different resolution levels. Even at the lowest level of resolution enhancement, our method features significant background reduction and thus contrast enhancement and is demonstrated on quantum dot-labeled microtubules of fibroblast cells.
引用
收藏
页码:22287 / 22292
页数:6
相关论文
共 32 条
[1]  
Abbe E., 1873, Arch. Mikrosk. Anat., V9, P413, DOI DOI 10.1007/BF02956173
[2]   Imaging intracellular fluorescent proteins at nanometer resolution [J].
Betzig, Eric ;
Patterson, George H. ;
Sougrat, Rachid ;
Lindwasser, O. Wolf ;
Olenych, Scott ;
Bonifacino, Juan S. ;
Davidson, Michael W. ;
Lippincott-Schwartz, Jennifer ;
Hess, Harald F. .
SCIENCE, 2006, 313 (5793) :1642-1645
[3]   Raster image correlation spectroscopy (RICS) for measuring fast protein dynamics and concentrations with a commercial laser scanning confocal microscope [J].
Brown, C. M. ;
Dalal, R. B. ;
Hebert, B. ;
Digman, M. A. ;
Horwitz, A. R. ;
Gratton, E. .
JOURNAL OF MICROSCOPY-OXFORD, 2008, 229 (01) :78-91
[4]   Relationship between single quantum-dot intermittency and fluorescence intensity decays from collections of dots [J].
Chung, IH ;
Bawendi, MG .
PHYSICAL REVIEW B, 2004, 70 (16) :1-5
[5]   Fluorescence nanoscopy by ground-state depletion and single-molecule return [J].
Foelling, Jonas ;
Bossi, Mariano ;
Bock, Hannes ;
Medda, Rebecca ;
Wurm, Christian A. ;
Hein, Birka ;
Jakobs, Stefan ;
Eggeling, Christian ;
Hell, Stefan W. .
NATURE METHODS, 2008, 5 (11) :943-945
[6]   Universal emission intermittency in quantum dots, nanorods and nanowires [J].
Frantsuzov, Pavel ;
Kuno, Masaru ;
Janko, Boldizsar ;
Marcus, Rudolph A. .
NATURE PHYSICS, 2008, 4 (07) :519-522
[7]  
Gustafsson MGL, 1999, J MICROSC-OXFORD, V195, P10, DOI 10.1046/j.1365-2818.1999.00576.x
[8]   Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy [J].
Gustafsson, MGL .
JOURNAL OF MICROSCOPY, 2000, 198 (02) :82-87
[9]   Spatiotemporal image correlation Spectroscopy (STICS) theory, verification, and application to protein velocity mapping in living CHO cells [J].
Hebert, B ;
Costantino, S ;
Wiseman, PW .
BIOPHYSICAL JOURNAL, 2005, 88 (05) :3601-3614
[10]   Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes [J].
Heilemann, Mike ;
van de Linde, Sebastian ;
Schuttpelz, Mark ;
Kasper, Robert ;
Seefeldt, Britta ;
Mukherjee, Anindita ;
Tinnefeld, Philip ;
Sauer, Markus .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (33) :6172-6176