Stationary states of non-linear oscillators driven by Levy noise

被引:126
作者
Chechkin, A
Gonchar, V
Klafter, J
Metzler, R
Tanatarov, L
机构
[1] Kharkov Phys & Technol Inst, Natl Sci Ctr, Inst Theoret Phys, UA-61108 Kharkov, Ukraine
[2] Free Univ Berlin, Erstes Math Inst, FB Math & Informat, D-14195 Berlin, Germany
[3] Tel Aviv Univ, Sackler Fac Exact Sci, Sch Chem, IL-69978 Tel Aviv, Israel
[4] MIT, Dept Phys, Cambridge, MA 02139 USA
[5] NORDITA, DK-2100 Copenhagen O, Denmark
关键词
Levy flights; fractional derivative; non-linear oscillator; fractional kinetic equation; Levy stable noise;
D O I
10.1016/S0301-0104(02)00551-7
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We study the probability density function in the stationary state of non-linear oscillators which are subject to Levy stable noise and confined within symmetric potentials of the general form U(x) alpha x(2m+2)/(2m + 2), m = 0, 1, 2,.... For m greater than or equal to 1, the probability density functions display a distinct bimodal character and have power-law tails which decay faster than those of the noise probability density. This is in contrast to the Levy harmonic oscillator m = 0. For the particular case of an anharmonic Levy oscillator with U(x) = ax(2)/2 + bx(4)/4, a > 0, we find a turnover from unimodality to bimodality at stationarity. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:233 / 251
页数:19
相关论文
共 40 条
[1]  
[Anonymous], PHYS REV A
[2]  
Balescu R., 1997, STAT DYNAMICS MATTER
[3]   Dynamics of an anharmonic oscillator with a periodic perturbation [J].
Bolotin, YL ;
Gonchar, VY ;
Granovskii, MY ;
Chechkin, AV .
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 1999, 88 (01) :196-205
[4]   A simple nonlinear model for pendular chaotic oscillations of reactor core barrel [J].
Bolotin, YL ;
Bulavin, VV ;
Chechkin, AV ;
Gonchar, VY .
PROGRESS IN NUCLEAR ENERGY, 1999, 35 (01) :65-78
[5]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[6]   Stochastic problems in physics and astronomy [J].
Chandrasekhar, S .
REVIEWS OF MODERN PHYSICS, 1943, 15 (01) :0001-0089
[7]   A model for persistent Levy motion [J].
Chechkin, AV ;
Gonchar, VY .
PHYSICA A, 2000, 277 (3-4) :312-326
[8]  
CHECHKIN AV, 2000, SOV PHYS JETP, V118, P730
[9]   LEVY FLIGHTS IN RANDOM-ENVIRONMENTS [J].
FOGEDBY, HC .
PHYSICAL REVIEW LETTERS, 1994, 73 (19) :2517-2520
[10]  
Gnedenko B. V., 1954, ADDISON WESLEY MATH