Tuneable micro- and nano-periodic structures in a free-standing flexible urethane/urea elastomer film

被引:18
作者
Godinho, M. H. [1 ]
Trindade, A. C.
Figueirinhas, J. L.
Melo, L. V.
Brogueira, P.
Deus, A. M.
Teixeira, P. I. C.
机构
[1] Univ Nova Lisboa, Dept Ciencia Mat, Fac Ciencias & Tecnol, P-2829516 Caparica, Portugal
[2] Univ Lisbon, Ctr Fis Mat Condensada, P-1649003 Lisbon, Portugal
[3] Inst Super Tecn, Dept Fis, P-1049001 Lisbon, Portugal
[4] Inst Super Tecn, ICEMS, P-1049001 Lisbon, Portugal
[5] Inst Super Tecn, Dept Mat Engn, P-1049001 Lisbon, Portugal
[6] Univ Catolica Portuguesa, Fac Engn, P-2635631 Rio de Mouro, Portugal
关键词
D O I
10.1140/epje/i2006-10070-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We have studied the control and manipulation of tuneable equilibrium structures in a free-standing urethane/urea elastomer film by means of atomic force microscopy, small-angle light scattering and polarising optical microscopy. The urethane/urea elastomer was prepared by reacting a poly(propyleneoxide)-based triisocyanate-terminated prepolymer (PU) with poly(butadienediol) (PBDO), with a weight ratio of 60% PU/40% PBDO. An elastomer film was shear-cast onto a glass plate and allowed to cure, first in an oven, then in air. Latent micro- and nano-periodic patterns are induced by ultra-violet (UV) irradiation of the film and can be "developed" by applying a plane uniaxial stress or by immersing the elastomer in an appropriate solvent and then drying it. For this elastomer we describe six pattern states, how they are related and how they can be manipulated. The morphological features of the UV-exposed film surface can be tuned, reproducibly and reversibly, by switching the direction of the applied mechanical field. Elastomers extracted in toluene exhibit different surface patterns depending upon the state in which they were developed. Stress-strain data collected for the films before and after UV irradiation reveal anisotropy induced by the shear-casting conditions and enhanced by the mechanical field. We have interpreted our results by assuming the film to consist of a thin, stiff surface layer ("skin") lying atop a thicker, softer substrate ("bulk"). The skin's higher stiffness is hypothesised to be due to the more extensive cross-linking of chains located near the surface by the UV radiation. Patterns would thus arise as a competition between the effects of bending the skin and stretching/compressing the bulk, as in the work of Cerda and Mahadevan (Phys. Rev. Lett. 90, 074302 (2003)). We present some preliminary results of a simulation of this model using the Finite Element package ABAQUS.
引用
收藏
页码:319 / 330
页数:12
相关论文
共 43 条
[1]   Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer [J].
Bowden, N ;
Brittain, S ;
Evans, AG ;
Hutchinson, JW ;
Whitesides, GM .
NATURE, 1998, 393 (6681) :146-149
[2]   Fast liquid-crystal elastomer swims into the dark [J].
Camacho-Lopez, M ;
Finkelmann, H ;
Palffy-Muhoray, P ;
Shelley, M .
NATURE MATERIALS, 2004, 3 (05) :307-310
[3]   Geometry and physics of wrinkling [J].
Cerda, E ;
Mahadevan, L .
PHYSICAL REVIEW LETTERS, 2003, 90 (07) :4
[4]   PROPERTIES OF LINEAR ELASTOMERIC POLYURETHANES [J].
COOPER, SL ;
TOBOLSKY, AV .
JOURNAL OF APPLIED POLYMER SCIENCE, 1966, 10 (12) :1837-&
[5]   Nested self-similar wrinkling patterns in skins [J].
Efimenko, K ;
Rackaitis, M ;
Manias, E ;
Vaziri, A ;
Mahadevan, L ;
Genzer, J .
NATURE MATERIALS, 2005, 4 (04) :293-297
[6]   Structural characterization of thin hydroxypropylcellulose films. X-ray reflectivity studies [J].
Evmenenko, G ;
Yu, CJ ;
Kewalramani, S ;
Dutta, P .
LANGMUIR, 2004, 20 (05) :1698-1703
[7]   MORPHOLOGY OF CRYSTALLINE POLYURETHANE HARD SEGMENT DOMAINS AND SPHERULITES [J].
FRIDMAN, ID ;
THOMAS, EL .
POLYMER, 1980, 21 (04) :388-392
[8]   Self-assembly of crystalline-coil diblock copolymer in solvents with varying selectivity: From spinodal-like aggregates to spheres, cylinders, and lamellae [J].
Fu, J ;
Luan, B ;
Yu, X ;
Cong, Y ;
Li, J ;
Pan, CY ;
Han, YC ;
Yang, YM ;
Li, BY .
MACROMOLECULES, 2004, 37 (03) :976-986
[9]   Organized structures obtained from urethane/urea elastomers [J].
Godinho, MH ;
Trindade, AC ;
Figueirinhas, JL ;
Vidal, D ;
Melo, LV ;
Borgueira, P .
SYNTHETIC METALS, 2004, 147 (1-3) :209-213
[10]   Atomic force microscopy evidence of patterning urethane/urea copolymers [J].
Godinho, MH ;
Melo, LV ;
Brogueira, P .
MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2003, 23 (6-8) :919-922