Exponential stability of triangular differential inclusion systems

被引:9
作者
Cohen, N
Lewkowicz, I
Rodman, L
机构
[1] COLL WILLIAM & MARY,DEPT MATH,WILLIAMSBURG,VA 23185
[2] UNIV CAMPINAS,DEPT MATH APPL,BR-13081 CAMPINAS,SP,BRAZIL
[3] BEN GURION UNIV NEGEV,DEPT ELECT & COMP ENGN,IL-84105 BEER SHEVA,ISRAEL
基金
美国国家科学基金会;
关键词
differential inclusions; exponential stability; triangular systems;
D O I
10.1016/S0167-6911(97)00004-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider a differential inclusion system of the form (x) over dot is an element of Ax, where A is a collection of upper triangular matrices. Conditions for exponential stability of all the possible solutions are given. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:159 / 164
页数:6
相关论文
共 15 条
[1]  
[Anonymous], 1993, Linear System Theory
[2]  
[Anonymous], 1979, DIFFER EQU
[3]  
Boyd S., 1994, SIAM
[4]   Convex invertible cones and the Lyapunov equation [J].
Cohen, N ;
Lewkowicz, I .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 250 :105-131
[5]  
DEMIDOVICH BP, 1967, LECTURES MATH THEORY
[6]  
Hartman P, 1964, ORDINARY DIFFERENTIA
[7]   VECTOR NORMS AS LYAPUNOV FUNCTIONS FOR LINEAR-SYSTEMS [J].
KIENDL, H ;
ADAMY, J ;
STELZNER, P .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (06) :839-842
[8]   ASYMPTOTIC BEHAVIOR FOR DIFFERENTIAL EQUATIONS WHICH CANNOT BE LOCALLY LINEARIZED [J].
LASOTA, A ;
STRAUSS, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1971, 10 (01) :152-&
[9]  
LEWKOWICZ I, UNPUB REMARKS KINEMA
[10]   CRITERIA OF ASYMPTOTIC STABILITY OF DIFFERENTIAL AND DIFFERENCE INCLUSIONS ENCOUNTERED IN CONTROL-THEORY [J].
MOLCHANOV, AP ;
PYATNITSKIY, YS .
SYSTEMS & CONTROL LETTERS, 1989, 13 (01) :59-64