Sub-wavelength nanofluidics in photonic crystal sensors

被引:98
作者
Huang, Min [1 ,2 ]
Yanik, Ahmet Ali [1 ,2 ]
Chang, Tsung-Yao [4 ]
Altug, Hatice [1 ,2 ,3 ]
机构
[1] Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA
[2] Boston Univ, Photon Ctr, Boston, MA 02215 USA
[3] Div Mat Sci & Engn, Boston, MA 02215 USA
[4] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
来源
OPTICS EXPRESS | 2009年 / 17卷 / 26期
基金
美国国家科学基金会;
关键词
SURFACE-PLASMON RESONANCE; BIOSENSOR;
D O I
10.1364/OE.17.024224
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We introduce a novel sensor scheme combining nano-photonics and nano-fluidics on a single platform through the use of free-standing photonic crystals. By harnessing nano-scale openings, we theoretically and experimentally demonstrate that both fluidics and light can be manipulated at sub-wavelength scales. Compared to the conventional fluidic channels, we actively steer the convective flow through the nanohole openings for effective delivery of the analytes to the sensor surface. We apply our method to detect refractive index changes in aqueous solutions. Bulk measurements indicate that active delivery of the convective flow results in better sensitivities. The sensitivity of the sensor reaches 510 nm/RIU for resonance located around 850 nm with a line-width of similar to 10 nm in solution. Experimental results are matched very well with numerical simulations. We also show that cross-polarization measurements can be employed to further improve the detection limit by increasing the signal-to-noise ratio. (C) 2009 Optical Society of America
引用
收藏
页码:24224 / 24233
页数:10
相关论文
共 28 条
[11]   Analysis of guided resonances in photonic crystal slabs [J].
Fan, SH ;
Joannopoulos, JD .
PHYSICAL REVIEW B, 2002, 65 (23) :1-8
[12]   Target delivery in a microfluidic immunosensor [J].
Golden, Joel P. ;
Floyd-Smith, Tamara M. ;
Mott, David R. ;
Ligler, Frances S. .
BIOSENSORS & BIOELECTRONICS, 2007, 22 (11) :2763-2767
[13]   A unified view of propagating and localized surface plasmon resonance biosensors [J].
Haes, AJ ;
Van Duyne, RP .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2004, 379 (7-8) :920-930
[14]   A nanoscale optical biosensor: The long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles [J].
Haes, AJ ;
Zou, SL ;
Schatz, GC ;
Van Duyne, RP .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (01) :109-116
[15]   Optical sensing systems for microfluidic devices: A review [J].
Kuswandi, Bambang ;
Nuriman ;
Huskens, Jurriaan ;
Verboom, Willem .
ANALYTICA CHIMICA ACTA, 2007, 601 (02) :141-155
[16]  
Levi O., 2007, P SOC PHOTO-OPT INS, V6447, P2
[17]   Nanoscale optofluidic sensor arrays [J].
Mandal, Sudeep ;
Erickson, David .
OPTICS EXPRESS, 2008, 16 (03) :1623-1631
[18]   Integrated optofluidics: A new river of light [J].
Monat, C. ;
Domachuk, P. ;
Eggleton, B. J. .
NATURE PHOTONICS, 2007, 1 (02) :106-114
[19]   Surface plasmon resonance mass spectrometry: recent progress and outlooks [J].
Nedelkov, D ;
Nelson, RW .
TRENDS IN BIOTECHNOLOGY, 2003, 21 (07) :301-305
[20]  
Raiteri R., 2002, MATER TODAY, V5, P22, DOI DOI 10.1016/S1369-7021(02)05139-8