Effects of threonine 203 replacements on excited-state dynamics and fluorescence properties of the green fluorescent protein (GFP)

被引:81
作者
Kummer, AD
Wiehler, J
Rehaber, H
Kompa, C
Steipe, B
Michel-Beyerle, ME [1 ]
机构
[1] Tech Univ Munich, Inst Phys & Theoret Chem, D-85748 Garching, Germany
[2] Univ Munich, Genzentrum, D-81377 Munich, Germany
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2000年 / 104卷 / 19期
关键词
D O I
10.1021/jp9942522
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report a comparative study of wild-type green fluorescent protein (GFP) and single-site mutants in which threonine at position 203 has been replaced by aliphatic and aromatic residues, i.e., by valine (V), isoleucine (I), phenylalanine (F), tyrosine (Y), and histidine (H). Steady-state absorption spectra reveal changes that reflect different charge distributions in the mutants as compared to wild-type GFP. While the absorption peak of the protonated fluorophore, RH, undergoes only a small red shift in all T203 mutants, a pronounced red shift is observed for the deprotonated form R-, ca. 1000 cm(-1) for the aliphatic mutants T203V and T203I, ca. 1200 cm(-1) for T203F, and 1360 cm(-1) for T203Y. Thus, we conclude that a ground-state conformation higher in energy than the wild-type R- state is the predominant origin of the red shift in all the T203 mutants investigated. Furthermore, mutant-dependent changes in the ground-state equilibria of RH and R- result from at least two modes of electrostatic stabilization, one resting on hydrogen bonding as in T203 and the other one on pi-pi-stacking as in T203F and T203Y. Surprisingly, the deprotonation dynamics of RH* is only weakly affected by the mutations at position 203. Only in the most red-shifted mutant T203Y an additional ultrafast (1.7 ps) excited-state decay channel of RH* has been observed. The identical kinetics of both processes, decay of RH* and ground-state recovery of RH in T203Y, is discussed in terms of two mechanisms: (i) rate-determining electron transfer from the protonated (or deprotonated) tyrosyl 203 residue to RH* followed by considerably faster recombination processes, which cannot occur in T203F for energetic reasons, and (ii) internal conversion in RH* favored by rotational motion around the exocyclic double bond.
引用
收藏
页码:4791 / 4798
页数:8
相关论文
共 30 条
[1]   Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein [J].
Brejc, K ;
Sixma, TK ;
Kitts, PA ;
Kain, SR ;
Tsien, RY ;
Ormo, M ;
Remington, SJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (06) :2306-2311
[2]   GREEN FLUORESCENT PROTEIN AS A MARKER FOR GENE-EXPRESSION [J].
CHALFIE, M ;
TU, Y ;
EUSKIRCHEN, G ;
WARD, WW ;
PRASHER, DC .
SCIENCE, 1994, 263 (5148) :802-805
[3]   Ultra-fast excited state dynamics in green fluorescent protein: Multiple states and proton transfer [J].
Chattoraj, M ;
King, BA ;
Bublitz, GU ;
Boxer, SG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (16) :8362-8367
[4]  
Creemers TMH, 1999, NAT STRUCT BIOL, V6, P557
[5]   UNDERSTANDING, IMPROVING AND USING GREEN FLUORESCENT PROTEINS [J].
CUBITT, AB ;
HEIM, R ;
ADAMS, SR ;
BOYD, AE ;
GROSS, LA ;
TSIEN, RY .
TRENDS IN BIOCHEMICAL SCIENCES, 1995, 20 (11) :448-455
[6]   On/off blinking and switching behaviour of single molecules of green fluorescent protein [J].
Dickson, RM ;
Cubitt, AB ;
Tsien, RY ;
Moerner, WE .
NATURE, 1997, 388 (6640) :355-358
[7]   Deletion mapping of the Aequorea victoria green fluorescent protein [J].
Dopf, J ;
Horiagon, TM .
GENE, 1996, 173 (01) :39-44
[8]   GREEN-FLUORESCENT PROTEIN MUTANTS WITH ALTERED FLUORESCENCE EXCITATION-SPECTRA [J].
EHRIG, T ;
OKANE, DJ ;
PRENDERGAST, FG .
FEBS LETTERS, 1995, 367 (02) :163-166
[9]   WAVELENGTH MUTATIONS AND POSTTRANSLATIONAL AUTOXIDATION OF GREEN FLUORESCENT PROTEIN [J].
HEIM, R ;
PRASHER, DC ;
TSIEN, RY .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (26) :12501-12504
[10]   Internal dynamics of green fluorescent protein [J].
Helms, V ;
Straatsma, TP ;
McCammon, JA .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (16) :3263-3269