Rice MicroRNA Effector Complexes and Targets

被引:280
作者
Wu, Liang [1 ,2 ]
Zhang, Qingqing [1 ]
Zhou, Huanyu [1 ]
Ni, Fangrui [1 ]
Wu, Xueying [1 ]
Qi, Yijun [1 ]
机构
[1] Natl Inst Biol Sci, Beijing 102206, Peoples R China
[2] Beijing Normal Univ, Coll Life Sci, Beijing 100875, Peoples R China
关键词
TRANS-ACTING SIRNAS; MESSENGER-RNA TARGETS; ARABIDOPSIS-THALIANA; OXIDATIVE STRESS; ENDOGENOUS SIRNA; STRUCTURAL BASIS; PLANT MICRORNAS; ARGONAUTE; GENE; BIOGENESIS;
D O I
10.1105/tpc.109.070938
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
MicroRNAs (miRNAs) are small silencing RNAs with regulatory roles in gene expression. miRNAs interact with Argonaute (AGO) proteins to form effector complexes that cleave target mRNAs or repress translation. Rice (Oryza sativa) encodes four AGO1 homologs (AGO1a, AGO1b, AGO1c, and AGO1d). We used RNA interference (RNAi) to knock down the four AGO1s. The RNAi lines displayed pleiotropic developmental phenotypes and had increased accumulation of miRNA targets. AGO1a, AGO1b, and AGO1c complexes were purified and further characterized. The three AGO1s all have a strong preference for binding small RNAs (sRNAs) with 59 U and have Slicer activity. We cataloged the sRNAs in each AGO1 complex by deep sequencing and found that all three AGO1s predominantly bound known miRNAs. Most of the miRNAs were evenly distributed in the three AGO1 complexes, suggesting a redundant role for the AGO1s. Intriguingly, a subset of miRNAs were specifically incorporated into or excluded from one of the AGO1s, suggesting functional specialization among the AGO1s. Furthermore, we identified rice miRNA targets at a global level. The validated targets include transcription factors that control major stages of development and also genes involved in a variety of physiological processes, indicating a broad regulatory role for miRNAs in rice.
引用
收藏
页码:3421 / 3435
页数:15
相关论文
共 71 条
[1]   Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome [J].
Addo-Quaye, Charles ;
Eshoo, Tifani W. ;
Bartel, David P. ;
Axtell, Michael J. .
CURRENT BIOLOGY, 2008, 18 (10) :758-762
[2]   DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7 [J].
Adenot, Xavier ;
Elmayan, Taline ;
Lauressergues, Dominique ;
Boutet, Stéphanie ;
Bouché, Nicolas ;
Gasciolli, Virginie ;
Vaucheret, Hervé .
CURRENT BIOLOGY, 2006, 16 (09) :927-932
[3]  
Allen E, 2005, CELL, V121, P207, DOI 10.1016/j.cell.2005.04.004
[4]   Role of superoxide dismutases (SODs) in controlling oxidative stress in plants [J].
Alscher, RG ;
Erturk, N ;
Heath, LS .
JOURNAL OF EXPERIMENTAL BOTANY, 2002, 53 (372) :1331-1341
[5]   Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes [J].
Aukerman, MJ ;
Sakai, H .
PLANT CELL, 2003, 15 (11) :2730-2741
[6]   A two-hit trigger for siRNA biogenesis in plants [J].
Axtell, Michael J. ;
Jan, Calvin ;
Rajagopalan, Ramya ;
Bartel, David P. .
CELL, 2006, 127 (03) :565-577
[7]   RNA silencing in plants [J].
Baulcombe, D .
NATURE, 2004, 431 (7006) :356-363
[8]   Detection of 91 potential in plant conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes [J].
Bonnet, E ;
Wuyts, J ;
Rouzé, P ;
Van de Peer, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (31) :11511-11516
[9]   Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis [J].
Borsani, O ;
Zhu, JH ;
Verslues, PE ;
Sunkar, R ;
Zhu, JK .
CELL, 2005, 123 (07) :1279-1291
[10]   Widespread translational inhibition by plant miRNAs and siRNAs [J].
Brodersen, Peter ;
Sakvarelidze-Achard, Lali ;
Bruun-Rasmussen, Marianne ;
Dunoyer, Patrice ;
Yamamoto, Yoshiharu Y. ;
Sieburth, Leslie ;
Voinnet, Olivier .
SCIENCE, 2008, 320 (5880) :1185-1190