Computing contour trees in all dimensions

被引:257
作者
Carr, H
Snoeyink, J [1 ]
Axen, U
机构
[1] Univ British Columbia, Dept Comp Sci, Vancouver, BC V6T 1W5, Canada
[2] Univ N Carolina, Dept Comp Sci, Chapel Hill, NC USA
[3] Washington State Univ, Sch EECS, Pullman, WA 99164 USA
来源
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS | 2003年 / 24卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
iso-surfaces; simplicial meshes; Morse theory; resolving singularities;
D O I
10.1016/S0925-7721(02)00093-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that contour trees can be computed in all dimensions by a simple algorithm that merges two trees. Our algorithm extends, simplifies, and improves work of Thrasov and Vyalyi and of van Kreveld et al. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:75 / 94
页数:20
相关论文
共 31 条
[31]   Multiresolution tetrahedral framework for visualizing regular volume data [J].
Zhou, Y ;
Chen, BQ ;
Kaufman, A .
VISUALIZATION '97 - PROCEEDINGS, 1997, :135-+