A systematic analysis of lineage-specific evolution in metabolic pathways

被引:5
作者
Ardawatia, Himanshu
Liberles, David A. [1 ]
机构
[1] Univ Wyoming, Dept Biol Mol, Laramie, WY 82071 USA
[2] Univ Bergen, BCCS, Computat Biol Unit, N-5020 Bergen, Norway
关键词
positive selection; systems biology; mammals;
D O I
10.1016/j.gene.2006.08.013
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
In a search for the lineage-specific evolution of pathways between human, chimpanzee, mouse, and rat, orthologous gene families were generated from genome sequences, For each family, a model-based ratio of nonsynonymous to synonymous nucleotide substitution rates was calculated. Where the free-ratio model of individual ratios on each branch was Supported, these families were mapped to two databases of metabolic pathways (KEGG and BioCyc) and the lineage-specific evolution of pathways was evaluated. The most similar pathway evolution was seen between mouse and rat, while the evolutionary pattern between human and chimpanzee was less correlated. Individual pathways in the human lineage were observed to evolve in a faster, lineage-specific manner, including the pathway involving arachidonic acid metabolism (identified through the KEGG analysis) and pyrimidine metabolism (identified through both analyses). (c) 2006 Elsevier B.V All rights reserved.
引用
收藏
页码:67 / 74
页数:8
相关论文
共 29 条
[1]   Functional inferences from reconstructed evolutionary biology involving rectified databases - an evolutionarily grounded approach to functional genomics [J].
Benner, SA ;
Chamberlin, SG ;
Liberles, DA ;
Govindarajan, S ;
Knecht, L .
RESEARCH IN MICROBIOLOGY, 2000, 151 (02) :97-106
[2]   Post-genomic science: Converting primary structure into physiological function [J].
Benner, SA ;
Trabesinger, N ;
Schreiber, D .
ADVANCES IN ENZYME REGULATION, VOL 38, 1998, 38 :155-180
[3]   Ensembl 2006 [J].
Birney, E. ;
Andrews, D. ;
Caccamo, M. ;
Chen, Y. ;
Clarke, L. ;
Coates, G. ;
Cox, T. ;
Cunningham, F. ;
Curwen, V. ;
Cutts, T. ;
Down, T. ;
Durbin, R. ;
Fernandez-Suarez, X. M. ;
Flicek, P. ;
Graf, S. ;
Hammond, M. ;
Herrero, J. ;
Howe, K. ;
Iyer, V. ;
Jekosch, K. ;
Kahari, A. ;
Kasprzyk, A. ;
Keefe, D. ;
Kokocinski, F. ;
Kulesha, E. ;
London, D. ;
Longden, I. ;
Melsopp, C. ;
Meidl, P. ;
Overduin, B. ;
Parker, A. ;
Proctor, G. ;
Prlic, A. ;
Rae, M. ;
Rios, D. ;
Redmond, S. ;
Schuster, M. ;
Sealy, I. ;
Searle, S. ;
Severin, J. ;
Slater, G. ;
Smedley, D. ;
Smith, J. ;
Stabenau, A. ;
Stalker, J. ;
Trevanion, S. ;
Ureta-Vidal, A. ;
Vogel, J. ;
White, S. ;
Woodwark, C. .
NUCLEIC ACIDS RESEARCH, 2006, 34 :D556-D561
[4]   Inferring nonneutral evolution from human-chimp-mouse orthologous gene trios [J].
Clark, AG ;
Glanowski, S ;
Nielsen, R ;
Thomas, PD ;
Kejariwal, A ;
Todd, MA ;
Tanenbaum, DM ;
Civello, D ;
Lu, F ;
Murphy, B ;
Ferriera, S ;
Wang, G ;
Zheng, XG ;
White, TJ ;
Sninsky, JJ ;
Adams, MD ;
Cargill, M .
SCIENCE, 2003, 302 (5652) :1960-1963
[5]   EVOLUTION OF A BIOSYNTHETIC-PATHWAY - THE TRYPTOPHAN PARADIGM [J].
CRAWFORD, IP .
ANNUAL REVIEW OF MICROBIOLOGY, 1989, 43 :567-600
[6]   Pathway alignment: application to the comparative analysis of glycolytic enzymes [J].
Dandekar, T ;
Schuster, S ;
Snel, B ;
Huynen, M ;
Bork, P .
BIOCHEMICAL JOURNAL, 1999, 343 :115-124
[7]   Mayday - a microarray data analysis workbench [J].
Dietzsch, J ;
Gehlenborg, N ;
Nieselt, K .
BIOINFORMATICS, 2006, 22 (08) :1010-1012
[8]   MUSCLE: multiple sequence alignment with high accuracy and high throughput [J].
Edgar, RC .
NUCLEIC ACIDS RESEARCH, 2004, 32 (05) :1792-1797
[9]   Large-scale search for genes on which positive selection may operate [J].
Endo, T ;
Ikeo, K ;
Gojobori, T .
MOLECULAR BIOLOGY AND EVOLUTION, 1996, 13 (05) :685-690
[10]   Phylogenetic analysis of metabolic pathways [J].
Forst, CV ;
Schulten, K .
JOURNAL OF MOLECULAR EVOLUTION, 2001, 52 (06) :471-489