Characterization of Rictor Phosphorylation Sites Reveals Direct Regulation of mTOR Complex 2 by S6K1

被引:352
作者
Dibble, Christian C. [1 ]
Asara, John M. [2 ,3 ]
Manning, Brendan D. [1 ]
机构
[1] Harvard Univ, Sch Publ Hlth, Dept Genet & Complex Dis, Boston, MA 02115 USA
[2] Beth Israel Deaconess Med Ctr, Div Signal Transduct, Boston, MA 02215 USA
[3] Harvard Univ, Sch Med, Dept Med, Boston, MA USA
关键词
INSULIN-RECEPTOR SUBSTRATE-1; HYDROPHOBIC MOTIF PHOSPHORYLATION; AKT/PROTEIN-KINASE-B; PROTEIN-KINASE; MAMMALIAN TARGET; TUBEROUS SCLEROSIS; CELL-GROWTH; RAPAMYCIN COMPLEX-1; TSC1-TSC2; COMPLEX; BINDING PARTNER;
D O I
10.1128/MCB.00735-09
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The mammalian target of rapamycin (mTOR) functions within two distinct complexes (mTORC1 and mTORC2) to control cell growth, proliferation, survival, and metabolism. While there has been great progress in our understanding of mTORC1 regulation, the signaling mechanisms that regulate mTORC2 have not been defined. In this study, we use liquid chromatography-tandem mass spectrometry analyses to identify 21 phosphorylation sites on the core mTORC2 component Rictor. We find that one site, T1135, undergoes growth factor-responsive phosphorylation that is acutely sensitive to rapamycin and is phosphorylated downstream of mTORC1. We find that Rictor-T1135 is directly phosphorylated by the mTORC1-dependent kinase S6K1. Although this phosphorylation event does not affect mTORC2 integrity or in vitro kinase activity, expression of a phosphorylation site mutant of Rictor (T1135A) in either wild-type or Rictor null cells causes an increase in the mTORC2-dependent phosphorylation of Akt on S473. However, Rictor-T1135 phosphorylation does not appear to regulate mTORC2-mediated effects on SGK1 or PKC alpha. While the precise molecular mechanism affecting Akt is unknown, phosphorylation of T1135 stimulates binding of Rictor to 14-3-3 proteins. We provide evidence that Rictor-T1135 phosphorylation acts in parallel with other mTORC1-dependent feedback mechanisms, such as those affecting IRS-1 signaling to PI3K, to regulate the response of Akt to insulin.
引用
收藏
页码:5657 / 5670
页数:14
相关论文
共 73 条
[1]   Rapamycin regulates the phosphorylation of rictor [J].
Akcakanat, Argun ;
Singh, Gopal ;
Hung, Mien-Chie ;
Meric-Bernstam, Funda .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2007, 362 (02) :330-333
[2]   New Insights into mTOR Signaling: mTORC2 and Beyond [J].
Alessi, Dario R. ;
Pearce, Laura R. ;
Garcia-Martinez, Juan M. .
SCIENCE SIGNALING, 2009, 2 (67) :pe27
[3]   A label-free quantification method by MS/MS TIC compared to SILAC and spectral counting in a proteomics screen [J].
Asara, John M. ;
Christofk, Heather R. ;
Freimark, Lisa M. ;
Cantley, Lewis C. .
PROTEOMICS, 2008, 8 (05) :994-999
[4]   The PIF-binding pocket in PDK1 is essential for activation of S6K and SGK, but not PKB [J].
Biondi, RM ;
Kieloch, A ;
Currie, RA ;
Deak, M ;
Alessi, DR .
EMBO JOURNAL, 2001, 20 (16) :4380-4390
[5]   RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1 [J].
Burnett, PE ;
Barrow, RK ;
Cohen, NA ;
Snyder, SH ;
Sabatini, DM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (04) :1432-1437
[6]   Mammalian target of rapamycin regulates IRS-1 serine 307 phosphorylation [J].
Carlson, CJ ;
White, MF ;
Rondinone, CM .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2004, 316 (02) :533-539
[7]   Upstream of the mammalian target of rapamycin: do all roads pass through mTOR? [J].
Corradetti, M. N. ;
Guan, K-L .
ONCOGENE, 2006, 25 (48) :6347-6360
[8]   The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C [J].
Facchinetti, Valeria ;
Ouyang, Weiming ;
Wei, Hua ;
Soto, Nelyn ;
Lazorchak, Adam ;
Gould, Christine ;
Lowry, Carolyn ;
Newton, Alexandra C. ;
Mao, Yuxin ;
Miao, Robert Q. ;
Sessa, William C. ;
Qin, Jun ;
Zhang, Pumin ;
Su, Bing ;
Jacinto, Estela .
EMBO JOURNAL, 2008, 27 (14) :1932-1943
[9]  
FLOTOW H, 1992, J BIOL CHEM, V267, P3074
[10]   PRAS40 is a target for mammalian target of rapamycin complex 1 and is required for signaling downstream of this complex [J].
Fonseca, Bruno D. ;
Smith, Ewan M. ;
Lee, Vivian H. -Y. ;
MacKintosh, Carol ;
Proud, Christopher G. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (34) :24514-24524