Plant defensins

被引:663
作者
Thomma, BPHJ [1 ]
Cammue, BPA [1 ]
Thevissen, K [1 ]
机构
[1] Katholieke Univ Leuven, CMPG, B-3001 Heverlee, Belgium
关键词
Arabidopsis; cysteine-rich peptide; defensin; innate immunity; permeabilization; thionin;
D O I
10.1007/s00425-002-0902-6
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Plant defensins are small, basic peptides that have a characteristic three-dimensional folding pattern that is stabilized by eight disulfide-linked cysteines. They are termed plant defensins because they are structurally related to defensins found in other types of organism, including humans. To date, sequences of more than 80 different plant defensin genes from different plant species are available. In Arabidopsis thaliana, at least 13 putative plant defensin genes (PDF) are present, encoding 11 different plant defensins. Two additional genes appear to encode plant defensin fusions. Plant defensins inhibit the growth of a broad range of fungi but seem nontoxic to either mammalian or plant cells. Antifungal activity of defensins appears to require specific binding to membrane targets. This review focuses on the classification of plant defensins in general and in Arabidopsis specifically, and on the mode of action of plant defensins against fungal pathogens.
引用
收藏
页码:193 / 202
页数:10
相关论文
共 101 条
[1]   The glycan core of GPI-anchored proteins modulates aerolysin binding but is not sufficient: the polypeptide moiety is required for the toxin-receptor interaction [J].
Abrami, L ;
Velluz, MC ;
Hong, YJ ;
Ohishi, K ;
Mehlert, A ;
Ferguson, M ;
Kinoshita, T ;
van der Goot, FG .
FEBS LETTERS, 2002, 512 (1-3) :249-254
[2]   Solution structure of Pisum sativum defensin 1 by high resolution NMR:: Plant defensins, identical backbone with different mechanisms of action [J].
Almeida, MS ;
Cabral, KMS ;
Kurtenbach, E ;
Almeida, FCL ;
Valente, AP .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 315 (04) :749-757
[3]   Lipid rafts function in biosynthetic delivery of proteins to the cell surface in yeast [J].
Bagnat, M ;
Keränen, S ;
Shevchenko, A ;
Shevchenko, A ;
Simons, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (07) :3254-3259
[4]   Structure and functions of channel-forming peptides: Magainins, cecropins, melittin and alamethicin [J].
Bechinger, B .
JOURNAL OF MEMBRANE BIOLOGY, 1997, 156 (03) :197-211
[5]  
Bloch C, 1998, PROTEINS, V32, P334, DOI 10.1002/(SICI)1097-0134(19980815)32:3<334::AID-PROT9>3.0.CO
[6]  
2-H
[7]   A NEW FAMILY OF SMALL (5 KDA) PROTEIN INHIBITORS OF INSECT ALPHA-AMYLASES FROM SEEDS OR SORGHUM (SORGHUM-BICOLOR (L) MOENCH) HAVE SEQUENCE HOMOLOGIES WITH WHEAT GAMMA-PUROTHIONINS [J].
BLOCH, C ;
RICHARDSON, M .
FEBS LETTERS, 1991, 279 (01) :101-104
[8]   THIONINS [J].
BOHLMANN, H ;
APEL, K .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1991, 42 :227-240
[9]   PEPTIDE ANTIBIOTICS AND THEIR ROLE IN INNATE IMMUNITY [J].
BOMAN, HG .
ANNUAL REVIEW OF IMMUNOLOGY, 1995, 13 :61-92
[10]   2-DIMENSIONAL H-1-NMR STUDY OF RECOMBINANT INSECT DEFENSIN-A IN WATER - RESONANCE ASSIGNMENTS, SECONDARY STRUCTURE AND GLOBAL FOLDING [J].
BONMATIN, JM ;
BONNAT, JL ;
GALLET, X ;
VOVELLE, F ;
PTAK, M ;
REICHHART, JM ;
HOFFMANN, JA ;
KEPPI, E ;
LEGRAIN, M ;
ACHSTETTER, T .
JOURNAL OF BIOMOLECULAR NMR, 1992, 2 (03) :235-256