65 nm feature sizes using visible wavelength 3-D multiphoton lithography

被引:254
作者
Haske, Wojciech [1 ]
Chen, Vincent W.
Hales, Joel M.
Dong, Wenting
Barlow, Stephen
Marder, Seth R.
Perry, Joseph W.
机构
[1] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Ctr Organ Photon & Elect, Atlanta, GA 30332 USA
来源
OPTICS EXPRESS | 2007年 / 15卷 / 06期
关键词
2-PHOTON POLYMERIZATION; 3D MICROFABRICATION; LASER; PHOTOPOLYMERIZATION; MICROMACHINES; RESOLUTION;
D O I
10.1364/OE.15.003426
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Nanoscale features as small as 65 +/- 5 nm have been formed reproducibly by using 520 nm femtosecond pulsed excitation of a 4,4' bis(di-n-butylamino) biphenyl chromophore to initiate crosslinking in a triacrylate blend. Dosimetry studies of the photoinduced polymerization were performed on chromophores with sizable two-photon absorption cross-sections at 520 and 730 nm. These studies show that sub-diffraction limited line widths are obtained in both cases with the lines written at 520 nm being smaller. Three-dimensional multiphoton lithography at 520 nm has been used to fabricate polymeric woodpile photonic crystal structures that show stop bands in the near-infrared spectral region. (c) 2007 Optical Society of America.
引用
收藏
页码:3426 / 3436
页数:11
相关论文
共 20 条
[1]   Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication [J].
Cumpston, BH ;
Ananthavel, SP ;
Barlow, S ;
Dyer, DL ;
Ehrlich, JE ;
Erskine, LL ;
Heikal, AA ;
Kuebler, SM ;
Lee, IYS ;
McCord-Maughon, D ;
Qin, JQ ;
Röckel, H ;
Rumi, M ;
Wu, XL ;
Marder, SR ;
Perry, JW .
NATURE, 1999, 398 (6722) :51-54
[2]   Direct laser writing of three-dimensional photonic-crystal templates for telecommunications [J].
Deubel, M ;
Von Freymann, G ;
Wegener, M ;
Pereira, S ;
Busch, K ;
Soukoulis, CM .
NATURE MATERIALS, 2004, 3 (07) :444-447
[3]   Complex micromachines produced and driven by light [J].
Galajda, P ;
Ormos, P .
APPLIED PHYSICS LETTERS, 2001, 78 (02) :249-251
[4]   Two-photon lithography of nanorods in SU-8 photoresist [J].
Juodkazis, S ;
Mizeikis, V ;
Seet, KK ;
Miwa, M ;
Misawa, H .
NANOTECHNOLOGY, 2005, 16 (06) :846-849
[5]   Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption. [J].
Kawata, S ;
Sun, HB ;
Tanaka, T ;
Takada, K .
NATURE, 2001, 412 (6848) :697-698
[6]   Self-focusing and self-trapping of optical beams upon photopolymerization [J].
Kewitsch, AS ;
Yariv, A .
OPTICS LETTERS, 1996, 21 (01) :24-26
[7]  
Kuebler S. M., 2001, Journal of Photopolymer Science and Technology, V14, P657, DOI 10.2494/photopolymer.14.657
[8]   Three-dimensional microfabrication using two-photon activated chemistry [J].
Kuebler, SM ;
Cumpston, BH ;
Ananthavel, S ;
Barlow, S ;
Ehrlich, JE ;
Erskine, LL ;
Heikal, AA ;
McCord-Maughon, D ;
Qin, J ;
Röckel, H ;
Rumi, M ;
Marder, SR ;
Perry, JW .
MICRO- AND NANO-PHOTONIC MATERIALS AND DEVICES, 2000, 3937 :97-105
[9]   Two-photon absorption:: from optical power limiting to 3D microfabrication [J].
Lemercier, G ;
Mulatier, JC ;
Martineau, U ;
Anémian, R ;
Andraud, C ;
Wang, I ;
Stéphan, O ;
Amari, N ;
Baldeck, P .
COMPTES RENDUS CHIMIE, 2005, 8 (08) :1308-1316
[10]   A three-dimensional photonic crystal operating at infrared wavelengths [J].
Lin, SY ;
Fleming, JG ;
Hetherington, DL ;
Smith, BK ;
Biswas, R ;
Ho, KM ;
Sigalas, MM ;
Zubrzycki, W ;
Kurtz, SR ;
Bur, J .
NATURE, 1998, 394 (6690) :251-253