High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast?

被引:272
作者
Abdel-Banat, Babiker M. A. [1 ]
Hoshida, Hisashi [1 ]
Ano, Akihiko [2 ]
Nonklang, Sanom [1 ]
Akada, Rinji [1 ]
机构
[1] Yamaguchi Univ, Grad Sch Med, Dept Appl Mol Biosci, Ube, Yamaguchi 7558611, Japan
[2] Iwata Chem Co Ltd, Nakaizumi, Iwata 4380078, Japan
基金
日本学术振兴会;
关键词
Kluyveromyces marxianus; Saccharomyces cerevisiae; Fuel; Ethanol; Cost; KLUYVEROMYCES-MARXIANUS IMB3; SIMULTANEOUS SACCHARIFICATION; THERMOTOLERANT YEAST; FUEL ETHANOL; SACCHAROMYCES-CEREVISIAE; PROCESS DESIGN; SELECTION; CELLULOSE; STRAINS; 40-DEGREES-C;
D O I
10.1007/s00253-009-2248-5
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The process of ethanol fermentation has a long history in the production of alcoholic drinks, but much larger scale production of ethanol is now required to enable its use as a substituent of gasoline fuels at 3%, 10%, or 85% (referred to as E3, E10, and E85, respectively). Compared with fossil fuels, the production costs are a major issue for the production of fuel ethanol. There are a number of possible approaches to delivering cost-effective fuel ethanol production from different biomass sources, but we focus in our current report on high-temperature fermentation using a newly isolated thermotolerant strain of the yeast Kluyveromyces marxianus. We demonstrate that a 5A degrees C increase only in the fermentation temperature can greatly affect the fuel ethanol production costs. We contend that this approach may also be applicable to the other microbial fermentations systems and propose that thermotolerant mesophilic microorganisms have considerable potential for the development of future fermentation technologies.
引用
收藏
页码:861 / 867
页数:7
相关论文
共 43 条
  • [1] Abdel-Fattah WR, 2000, BIOTECHNOL BIOENG, V68, P531, DOI 10.1002/(SICI)1097-0290(20000605)68:5<531::AID-BIT7>3.3.CO
  • [2] 2-P
  • [3] New developments in oxidative fermentation
    Adachi, O
    Moonmangmee, D
    Toyama, H
    Yamada, M
    Shinagawa, E
    Matsushita, K
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2003, 60 (06) : 643 - 653
  • [4] Engineering yeast transcription machinery for improved ethanol tolerance and production
    Alper, Hal
    Moxley, Joel
    Nevoigt, Elke
    Fink, Gerald R.
    Stephanopoulos, Gregory
    [J]. SCIENCE, 2006, 314 (5805) : 1565 - 1568
  • [5] HIGH-EFFICIENCY CARBOHYDRATE FERMENTATION TO ETHANOL AT TEMPERATURES ABOVE 40-DEGREES-C BY KLUYVEROMYCES-MARXIANUS VAR MARXIANUS ISOLATED FROM SUGAR MILLS
    ANDERSON, PJ
    MCNEIL, K
    WATSON, K
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1986, 51 (06) : 1314 - 1320
  • [6] SELECTION OF THERMOTOLERANT YEASTS FOR SIMULTANEOUS SACCHARIFICATION AND FERMENTATION (SSF) OF CELLULOSE TO ETHANOL
    BALLESTEROS, I
    BALLESTEROS, M
    CABANAS, A
    CARRASCO, J
    MARTIN, C
    NEGRO, MJ
    SAEZ, F
    SAEZ, R
    [J]. APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 1991, 28-9 : 307 - 315
  • [7] Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875
    Ballesteros, M
    Oliva, JM
    Negro, MJ
    Manzanares, P
    Ballesteros, I
    [J]. PROCESS BIOCHEMISTRY, 2004, 39 (12) : 1843 - 1848
  • [8] Ethanol production from paper material using a simultaneous saccharification and fermentation system in a fed-batch basis
    Ballesteros, M
    Oliva, JM
    Manzanares, P
    Negro, MJ
    Ballesteros, I
    [J]. WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2002, 18 (06) : 559 - 561
  • [9] Bamforth C., 1998, BEER TAP ART SCI BRE
  • [10] ISOLATION OF THERMOTOLERANT, FERMENTATIVE YEASTS GROWING AT 52-DEGREES-C AND PRODUCING ETHANOL AT 45-DEGREES-C AND 50-DEGREES-C
    BANAT, IM
    NIGAM, P
    MARCHANT, R
    [J]. WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 1992, 8 (03) : 259 - 263