Robust output tracking for uncertain/nonlinear systems subject to almost constant disturbances

被引:10
作者
Açikmese, AB [1 ]
Corless, M [1 ]
机构
[1] Purdue Univ, Sch Aeronaut & Astronaut, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
nonlinear control systems; uncertain dynamic systems; tracking; disturbance rejection; robustness; PI controllers;
D O I
10.1016/S0005-1098(02)00071-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider uncertain/nonlinear systems subject to unknown constant disturbance inputs. We wish to design state feedback controllers which ensure that the system output asymptotically tracks a specified constant reference signal and all states are bounded. The controllers we consider are PI in the sense that they consist of a piece which depends linearly on the state and another piece which depends on the integral of the output tracking error. Our main result reduces the original problem to a stabilization problem for an associated augmented system which we call the derivative augmented system. We obtain controller design procedures for specific classes of uncertain/nonlinear systems. Then we extend these results to the situation in which the reference signal and the disturbance are not necessarily constant but asymptotically approach a constant. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1919 / 1926
页数:8
相关论文
共 20 条
[1]  
ACIKMESE AB, THESIS PURDUE U
[2]  
[Anonymous], 1967, STABILITY MOTION
[3]   A NEW CLASS OF STABILIZING CONTROLLERS FOR UNCERTAIN DYNAMICAL-SYSTEMS [J].
BARMISH, BR ;
CORLESS, M ;
LEITMANN, G .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1983, 21 (02) :246-255
[5]  
Bartle R., 1966, ELEMENTS INTEGRATION
[6]   Augmented system approach to measurement-based robust tracking [J].
Benson, RW ;
Schmitendorf, WE .
DYNAMICS AND CONTROL, 1997, 7 (04) :315-325
[7]  
Boyd S., 1994, LINEAR MATRIX INEQUA, DOI https://doi.org/10.1109/jproc.1998.735454
[8]  
Byrnes CI, 1998, IEEE DECIS CONTR P, P3069, DOI 10.1109/CDC.1998.757967
[9]   BOUNDED CONTROLLERS FOR ROBUST EXPONENTIAL CONVERGENCE [J].
CORLESS, M ;
LEITMANN, G .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1993, 76 (01) :1-12
[10]  
CORLESS M, 1993, VARIABLE STRUCTURE L