Binding of polycyclic aromatic hydrocarbons and graphene dimers in density functional theory

被引:59
作者
Chakarova-Kack, Svetla D.
Vojvodic, Aleksandra
Kleis, Jesper
Hyldgaard, Per [1 ]
Schroder, Elsebeth [1 ]
机构
[1] Chalmers Univ Technol, MC2, SE-41296 Gothenburg, Sweden
来源
NEW JOURNAL OF PHYSICS | 2010年 / 12卷
基金
瑞典研究理事会;
关键词
GENERALIZED GRADIENT APPROXIMATION; BENZENE DIMER; STACKING INTERACTIONS; INTERACTION ENERGIES; GRAPHITE; COMPLEXES; MECHANISM; SURFACES; EXCHANGE; FLAT;
D O I
10.1088/1367-2630/12/1/013017
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An early van der Waals density functional (vdW-DF) described layered systems (such as graphite and graphene dimers) using a layer-averaged electron density in the evaluation of nonlocal correlations. This early vdW-DF version was also adapted to approximate the binding of polycyclic aromatic hydrocarbons (PAHs) (Chakarova S D and Schroder E 2005 J. Chem. Phys. 122 054102). In parallel to that PAH study, a new vdW-DF version (Dion M, Rydberg H, Schroder E, Langreth D C and Lundqvist B I 2004 Phys. Rev. Lett. 92 246401) was developed that provides accounts of nonlocal correlations for systems of general geometry. We apply here the latter vdW-DF version to aromatic dimers of benzene, naphthalene, anthracene and pyrene, stacked in sandwich (AA) structure, and the slipped-parallel (AB) naphthalene dimer. We further compare the results of the two methods as well as other theoretical results obtained by quantum-chemistry methods. We also compare calculations for two interacting graphene sheets in the AA and the AB structures and provide the corresponding graphene-from-graphite exfoliation energies. Finally, we present an overview of the scaling of the molecular-dimer interaction with the number of carbon atoms and with the number of carbon rings.
引用
收藏
页数:16
相关论文
共 46 条
[11]   Van der waals density functional for general geometries (vol 92, art no 246401, 2004) -: art. no. 109902 [J].
Dion, M ;
Rydberg, H ;
Schröder, E ;
Langreth, DC ;
Lundqvist, BI .
PHYSICAL REVIEW LETTERS, 2005, 95 (10)
[12]   Van der Waals density functional for general geometries -: art. no. 246401 [J].
Dion, M ;
Rydberg, H ;
Schröder, E ;
Langreth, DC ;
Lundqvist, BI .
PHYSICAL REVIEW LETTERS, 2004, 92 (24) :246401-1
[13]  
Dion M., 2004, THESIS RUTGERS U NEW
[14]   Graphite, polycyclic aromatic hydrocarbons, and the 2175Å extinction feature [J].
Duley, WW ;
Seahra, S .
ASTROPHYSICAL JOURNAL, 1998, 507 (02) :874-888
[15]  
Fetzer J.C., 2000, The Chemistry and Analysis of the Large Polycyclic Aromatic Hydrocarbons
[16]   Accurate description of van der Waals complexes by density functional theory including empirical corrections [J].
Grimme, S .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2004, 25 (12) :1463-1473
[17]   EXCHANGE AND CORRELATION IN ATOMS, MOLECULES, AND SOLIDS BY SPIN-DENSITY FUNCTIONAL FORMALISM [J].
GUNNARSSON, O ;
LUNDQVIST, BI .
PHYSICAL REVIEW B, 1976, 13 (10) :4274-4298
[18]   Density functional theory augmented with an empirical dispersion term.: Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations [J].
Jurecka, Petr ;
Cerny, Jiri ;
Hobza, Pavel ;
Salahub, Dennis R. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2007, 28 (02) :555-569
[19]   Towards a working density-functional theory for polymers:: First-principles determination of the polyethylene crystal structure [J].
Kleis, Jesper ;
Lundqvist, Bengt I. ;
Langreth, David C. ;
Schroder, Elsebeth .
PHYSICAL REVIEW B, 2007, 76 (10)
[20]   Nature and strength of bonding in a crystal of semiconducting nanotubes:: van der Waals density functional calculations and analytical results [J].
Kleis, Jesper ;
Schroeder, Elsebeth ;
Hyldgaard, Per .
PHYSICAL REVIEW B, 2008, 77 (20)