Land cover and global productivity: a measurement strategy for the NASA programme

被引:34
作者
Janetos, AC [1 ]
Justice, CO
机构
[1] World Resources Inst, Washington, DC 20006 USA
[2] Univ Virginia, Dept Environm Sci, Global Environm Change Program, Charlottesville, VA 22903 USA
关键词
D O I
10.1080/014311600210281
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
NASAs Earth science programme is developing an improved understanding of terrestrial productivity and its relationship to global environmental change. Environmental change includes changes that are anthropogenic, caused for example by increasing population and resource use, as well as those that are natural, caused by interannual or decadal variability in climate and intrinsic vegetation dynamics. In response to current science and policy concerns, the Earth science programme has carbon and the major biogeochemical cycles as a primary focus but is broad enough to include related topics such as land-atmosphere interactions associated with the hydrological cycle and the chemical composition of the atmosphere. The research programme includes the study of ecosystems both as respondents to change and as mediators of feedback to the atmosphere. Underlying all the research elements are important questions of natural resources and sustainable land management. The land cover and land use change element of the programme is aimed specifically at studying the causes and effects of land transformation and changes in land use practices. The NASA Earth science programme has a primary focus on using satellite remote sensing systems but also recognizes the need for an integrated approach to achieving its science goals by combining satellite and in situ process measurements and numerical modelling. This paper outlines the programme strategy for addressing its major focus. The approach adopted provides a balance between long-term satellite measurements of the Earth's surface at moderate and high spatial resolutions that are needed to quantify change, and the new experimental satellite missions that are aimed at addressing specific process research questions and testing new sensing technology. In addition to satellite measurements, ground-based in situ measurements are needed to validate the satellite data products, to describe and quantify processes, and to parameterize and validate process models. Numerical models need to be enhanced to provide both the study of processes and a predictive capability for the study of global change.
引用
收藏
页码:1491 / 1512
页数:22
相关论文
共 58 条
[1]   Interannual variability of NDVI over Africa and its relation to El Nino Southern Oscillation [J].
Anyamba, A ;
Eastman, JR .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1996, 17 (13) :2533-2548
[2]   Strategies for measuring and modelling carbon dioxide and water vapour fluxes over terrestrial ecosystems [J].
Baldocchi, D ;
Valentini, R ;
Running, S ;
Oechel, W ;
Dahlman, R .
GLOBAL CHANGE BIOLOGY, 1996, 2 (03) :159-168
[3]   Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1 [J].
Barnes, WL ;
Pagano, TS ;
Salomonson, VV .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1998, 36 (04) :1088-1100
[4]  
Belward AS, 1999, PHOTOGRAMM ENG REM S, V65, P1013
[5]   RELATION BETWEEN THE NORMALIZED DIFFERENCE VEGETATION INDEX AND ECOLOGICAL VARIABLES [J].
CIHLAR, J ;
STLAURENT, L ;
DYER, JA .
REMOTE SENSING OF ENVIRONMENT, 1991, 35 (2-3) :279-298
[6]  
CIHLAR J, 1997, GCOS GTOS PLAN TERRE
[7]  
CLARK DK, 1999, IN PRESS J GEOPHYSIC
[8]  
Cracknell AP, 1997, The Advanced very high-resolution radiometer
[9]  
CRAMER W, 1997, IGBP GAIM REPORT SER, V5
[10]   Global continuous fields of vegetation characteristics: a linear mixture model applied to multi-year 8 km AVHRR data [J].
Defries, RS ;
Hansen, MC ;
Townshend, JRG .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2000, 21 (6-7) :1389-1414