Hutchinson-Lai's conjecture for bivariate extreme value copulas

被引:26
作者
Hürlimann, W [1 ]
机构
[1] Inst Actuariaat Econ, CH-8409 Winterthur, Switzerland
关键词
copula; monotone regression dependence; stochastic increasing dependence; Kendall tau; Spearman rho; bivariate extreme value; variational calculus;
D O I
10.1016/S0167-7152(02)00349-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The class of bivariate extreme value copulas, which satisfies the monotone regression positive dependence property or equivalently the stochastic increasing property, is considered. A variational calculus proof of the Hutchinson-Lai conjecture about Kendall's tau and Spearman's rho for this class is provided. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:191 / 198
页数:8
相关论文
共 38 条
[1]  
[Anonymous], SANKHYA
[2]  
Benes V., 1997, DISTRIBUTIONS GIVEN
[3]  
DACOROGNA B, 1992, CHAIERS MATH ECOLE P
[4]  
Dacorogna B., 1989, DIRECT METHODS CALCU
[5]  
Dall'aglio G., 1991, ADV PROBABILITY DIST
[6]  
DANIELS HE, 1950, J ROY STAT SOC B, V12, P171
[7]  
DEHAAN L, 1977, Z WAHRSCHEINLICHKEIT, V40, P317
[8]  
DEHAAN L, 1984, ANN PROBAB, V12, P1194
[9]   POINT-PROCESSES AND MULTIVARIATE EXTREME VALUES [J].
DEHEUVELS, P .
JOURNAL OF MULTIVARIATE ANALYSIS, 1983, 13 (02) :257-272
[10]  
Deheuvels P., 1978, PUBL I STAT U PARIS, V23, P1