Hutchinson-Lai's conjecture for bivariate extreme value copulas

被引:26
作者
Hürlimann, W [1 ]
机构
[1] Inst Actuariaat Econ, CH-8409 Winterthur, Switzerland
关键词
copula; monotone regression dependence; stochastic increasing dependence; Kendall tau; Spearman rho; bivariate extreme value; variational calculus;
D O I
10.1016/S0167-7152(02)00349-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The class of bivariate extreme value copulas, which satisfies the monotone regression positive dependence property or equivalently the stochastic increasing property, is considered. A variational calculus proof of the Hutchinson-Lai conjecture about Kendall's tau and Spearman's rho for this class is provided. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:191 / 198
页数:8
相关论文
共 38 条
[11]  
DEOLIVEIRA JT, 1984, STAT EXTREMES APPL, P131
[12]  
DURBIN J, 1951, J ROY STAT SOC B MET, V12, P303
[13]   Limiting forms of the frequency distribution of the largest or smallest member of a sample [J].
Fisher, RA ;
Tippett, LHC .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1928, 24 :180-190
[14]  
Galambos J, 1987, ASYMPTOTIC THEORY EX
[15]  
GEOFFROY J, 1958, PUBL I STAT U PARIS, V7, P37
[16]   Statistical properties of couples of bivariate extreme-value copulas [J].
Ghoudi, K ;
Khoudraji, A ;
Rivest, LP .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1998, 26 (01) :187-197
[17]  
Guillem AIG, 2000, CR ACAD SCI I-MATH, V330, P593
[18]  
Hutchinson T.P., 1990, CONTINUOUS BIVARIATE
[19]  
Joe H, 1997, MULTIVARIATE MODELS
[20]  
KIMELDORF G, 1975, COMMUN STAT, V4, P293, DOI 10.1080/03610927508827247