Statistical properties of couples of bivariate extreme-value copulas

被引:83
作者
Ghoudi, K
Khoudraji, A
Rivest, LP
机构
[1] Univ Quebec, Dept Math & Informat, Trois Rivieres, PQ G9A 5H7, Canada
[2] Univ Cadi Ayyad, Fac Sci Semlalia, Dept Math, Marrakech, Morocco
[3] Univ Laval, Dept Math & Stat, Ste Foy, PQ G1K 7P4, Canada
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 1998年 / 26卷 / 01期
关键词
Galambos' distribution; goodness of fit; Gumbel's dependence function; jackknife variance estimator; multivariate extreme-value distributions; simulation; U-statistic;
D O I
10.2307/3315683
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let (X,Y) be a bivariate random vector whose distribution function H(x,y) belongs to the class of bivariate extreme-value distributions. If F(1) and F(2) are the marginals of X and Y, then H(x,y) = C{F(1)(x),F(2)(y)}, where C is a bivariate extreme-value dependence function. This paper gives the joint distribution of the random variables Z = {log F(1)(X)}/{log F(1)(X)F(2)(Y)} and W = C{F(1)(X),F(2)(Y)}. Using this distribution, an algorithm to generate random variables having bivariate extreme-value distribution is presented. Furthermore, it is shown that for any bivariate extreme-value dependence function C, the distribution of the random variable W = C{F(1)(X),F(2)(Y)} belongs to a monoparametric family of distributions. This property is used to derive goodness-of-fit statistics to determine whether a copula belongs to an extreme-value family.
引用
收藏
页码:187 / 197
页数:11
相关论文
共 27 条
[1]  
ANDERSON CW, 1993, STATISTICS FOR THE ENVIRONMENT, P163
[2]   On Kendall's process [J].
Barbe, P ;
Genest, C ;
Ghoudi, K ;
Remillard, B .
JOURNAL OF MULTIVARIATE ANALYSIS, 1996, 58 (02) :197-229
[3]   A nonparametric estimation procedure for bivariate extreme value copulas [J].
Caperaa, P ;
Fougeres, AL ;
Genest, C .
BIOMETRIKA, 1997, 84 (03) :567-577
[4]  
CLAYTON DG, 1978, BIOMETRIKA, V65, P141, DOI 10.1093/biomet/65.1.141
[5]  
CORONELBRIZIO HF, 1996, TESTS FIT GEN EXTREM
[6]   ON THE LIMITING BEHAVIOR OF THE PICKANDS ESTIMATOR FOR BIVARIATE EXTREME-VALUE DISTRIBUTIONS [J].
DEHEUVELS, P .
STATISTICS & PROBABILITY LETTERS, 1991, 12 (05) :429-439
[7]  
DEOLIVERA JT, 1958, REV FAC CIENCAS U A, V8, P299
[8]   ORDER STATISTICS OF SAMPLES FROM MULTIVARIATE DISTRIBUTIONS [J].
GALAMBOS, J .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1975, 70 (351) :674-680
[9]  
Galambos J, 1987, ASYMPTOTIC THEORY EX
[10]   ARCHIMEDEAN COPULAS AND FAMILIES OF BIDIMENSIONAL LAWS FOR WHICH THE MARGINALS ARE GIVEN [J].
GENEST, C ;
MACKAY, RJ .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1986, 14 (02) :145-159