Evolutionary and functional conservation of the DNA non-homologous end-joining protein, XLF/cernunnos

被引:67
作者
Hentges, Pierre
Ahnesorg, Peter
Pitcher, Robert S.
Bruce, Chris K.
Kysela, Boris
Green, Andrew J.
Bianchi, Julie
Wilson, Thomas E.
Jackson, Stephen P.
Doherty, Aidan J. [1 ]
机构
[1] Univ Sussex, Genome Damage & Stabil Ctr, Brighton BN1 9RQ, E Sussex, England
[2] Univ Cambridge, Gurdon Inst, Cambridge CB2 1QN, England
[3] Univ Cambridge, Dept Zool, Cambridge CB2 1QN, England
[4] Univ Birmingham, Sch Med, Div Reprod & Child Hlth, Sect Med & Mol Genet, Birmingham B15 2TT, W Midlands, England
[5] Univ Michigan, Sch Med, Dept Pathol, Ann Arbor, MI 48109 USA
基金
英国生物技术与生命科学研究理事会; 英国医学研究理事会;
关键词
D O I
10.1074/jbc.M608727200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Non-homologous end-joining is a major pathway of DNA double-strand break repair in mammalian cells, deficiency in which confers radiosensitivity and immune deficiency at the whole organism level. A core protein complex comprising the Ku70/80 heterodimer together with a complex between DNA ligase IV and XRCC4 is conserved throughout eukaryotes and assembles at double-strand breaks to mediate ligation of broken DNA ends. In Saccharomyces cerevisiae an additional NHEJ protein, Nej1p, physically interacts with the ligase IV complex and is required in vivo for ligation of DNA double-strand breaks. Recent studies with cells derived from radiosensitive and immune-deficient patients have identified the human protein, XLF(also named Cernunnos), as a crucial NHEJ protein. Here we show that XLF and Nej1p are members of the same protein superfamily and that this family has members in diverse eukaryotes. Indeed, we show that a member of this family encoded by a previously uncharacterized open-reading frame in the Schizosaccharomyces pombe genome is required for NHEJ in this organism. Furthermore, our data reveal that XLF family proteins can bind to DNA and directly interact with the ligase IV-XRCC4 complex to promote DSB ligation. We therefore conclude that XLF family proteins interact with the ligase IV-XRCC4 complex to constitute the evolutionarily conserved enzymatic core of the NHEJ machinery.
引用
收藏
页码:37517 / 37526
页数:10
相关论文
共 61 条
[1]   XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining [J].
Ahnesorg, P ;
Smith, P ;
Jackson, SP .
CELL, 2006, 124 (02) :301-313
[2]  
AHNESORG P, 2006, IN PRESS DNA REPAIR
[3]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[4]  
BLIER PR, 1993, J BIOL CHEM, V268, P7594
[5]   Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways [J].
Boulton, SJ ;
Jackson, SP .
EMBO JOURNAL, 1996, 15 (18) :5093-5103
[6]   Absence of DNA ligase IV protein in XR-1 cells: evidence for stabilization by XRCC4 [J].
Bryans, M ;
Valenzano, MC ;
Stamato, TD .
MUTATION RESEARCH-DNA REPAIR, 1999, 433 (01) :53-58
[7]   Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immunodeficiency with microcephaly [J].
Buck, D ;
Malivert, L ;
de Chasseval, P ;
Barraud, A ;
Fondanèche, MC ;
Sanal, O ;
Plebani, A ;
Stéphan, JL ;
Hufnagel, M ;
le Deist, F ;
Fischer, A ;
Durandy, A ;
de Villartay, JP ;
Revy, P .
CELL, 2006, 124 (02) :287-299
[8]   Cernunnos interacts with the XRCC4•DNA-ligase IV complex and is homologous to the yeast nonhomologous end-joining factor Nej1 [J].
Callebaut, Isabelle ;
Malivert, Laurent ;
Fischer, Alain ;
Mornon, Jean-Paul ;
Revy, Patrick ;
de Villartay, Jean-Pierre .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (20) :13857-13860
[9]   Coordinated assembly of Ku and p460 subunits of the DNA-dependent protein kinase on DNA ends is necessary for XRCC4-ligase IV recruitment [J].
Calsou, P ;
Delteil, C ;
Frit, P ;
Droulet, J ;
Salles, B .
JOURNAL OF MOLECULAR BIOLOGY, 2003, 326 (01) :93-103
[10]   The DNA-dependent protein kinase catalytic activity regulates DNA end processing by means of Ku entry into DNA [J].
Calsou, P ;
Frit, P ;
Humbert, O ;
Muller, C ;
Chen, DJ ;
Salles, B .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (12) :7848-7856