c-Myc is essential for vasculogenesis and angiogenesis during development and tumor progression

被引:390
作者
Baudino, TA
McKay, C
Pendeville-Samain, H
Nilsson, JA
Maclean, KH
White, EL
Davis, AC
Ihle, JN
Cleveland, JL
机构
[1] St Jude Childrens Res Hosp, Dept Biochem, Memphis, TN 38105 USA
[2] St Jude Childrens Res Hosp, Howard Hughes Med Inst, Memphis, TN 38105 USA
[3] Bayer Corp, Div Pharmaceut, West Haven, CT 06516 USA
[4] Univ Tennessee, Dept Mol Sci, Memphis, TN 38163 USA
关键词
c-Myc; VEGF; vasculogenesis; angiogenesis; tumorigenesis;
D O I
10.1101/gad.1024602
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
c-Myc promotes cell growth and transformation by ill-defined mechanisms. c-myc(-/-) mice die by embryonic day 10.5 (E10.5) with defects in growth and in cardiac and neural development. Here we report that the lethality of c-myc(-/-) embryos is also associated with profound defects in vasculogenesis and primitive erythropoiesis. Furthermore, c-myc(-/-) embryonic stem (ES) and yolk sac cells are compromised in their differentiative and growth potential. These defects are intrinsic to c-Myc, and are in part associated with a requirement for c-Myc for the expression of vascular endothelial growth factor (VEGF), as VEGF can partially rescue these defects. However, c-Myc is also required for the proper expression of other angiogenic factors in ES and yolk sac cells, including angiopoietin-2, and the angiogenic inhibitors thrombospondin-1 and angiopoietin-1. Finally, c-myc(-/-) ES cells are dramatically impaired in their ability to form tumors in immune-compromised mice, and the small tumors that sometimes develop are poorly vascularized. Therefore, c-Myc function is also necessary for the angiogenic switch that is indispensable for the progression and metastasis of tumors. These findings support the model wherein c-Myc promotes cell growth and transformation, as well as vascular and hematopoietic development, by functioning as a master regulator of angiogenic factors.
引用
收藏
页码:2530 / 2543
页数:14
相关论文
共 56 条
[11]   Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele [J].
Carmeliet, P ;
Ferreira, V ;
Breier, G ;
Pollefeyt, S ;
Kieckens, L ;
Gertsenstein, M ;
Fahrig, M ;
Vandenhoeck, A ;
Harpal, K ;
Eberhardt, C ;
Declercq, C ;
Pawling, J ;
Moons, L ;
Collen, D ;
Risau, W ;
Nagy, A .
NATURE, 1996, 380 (6573) :435-439
[12]  
Choi K, 1998, DEVELOPMENT, V125, P725
[13]   A NULL C-MYC MUTATION CAUSES LETHALITY BEFORE 10.5 DAYS OF GESTATION IN HOMOZYGOTES AND REDUCED FERTILITY IN HETEROZYGOUS FEMALE MICE [J].
DAVIS, AC ;
WIMS, M ;
SPOTTS, GD ;
HANN, SR ;
BRADLEY, A .
GENES & DEVELOPMENT, 1993, 7 (04) :671-682
[14]   Analysis of C-MYC function in normal cells via conditional gene-targeted mutation [J].
de Alboran, IM ;
O'Hagan, RC ;
Gärtner, F ;
Malynn, B ;
Davidson, L ;
Rickert, R ;
Rajewsky, K ;
DePinho, RA ;
Alt, FW .
IMMUNITY, 2001, 14 (01) :45-55
[15]   CONTRASTING PATTERNS OF MYC AND N-MYC EXPRESSION DURING GASTRULATION OF THE MOUSE EMBRYO [J].
DOWNS, KM ;
MARTIN, GR ;
BISHOP, JM .
GENES & DEVELOPMENT, 1989, 3 (06) :860-869
[16]   THE MYC PROTEIN ACTIVATES TRANSCRIPTION OF THE ALPHA-PROTHYMOSIN GENE [J].
EILERS, M ;
SCHIRM, S ;
BISHOP, JM .
EMBO JOURNAL, 1991, 10 (01) :133-141
[17]   Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis [J].
Eischen, CM ;
Weber, JD ;
Roussel, MF ;
Sherr, CJ ;
Cleveland, JL .
GENES & DEVELOPMENT, 1999, 13 (20) :2658-2669
[18]   INDUCTION OF APOPTOSIS IN FIBROBLASTS BY C-MYC PROTEIN [J].
EVAN, GI ;
WYLLIE, AH ;
GILBERT, CS ;
LITTLEWOOD, TD ;
LAND, H ;
BROOKS, M ;
WATERS, CM ;
PENN, LZ ;
HANCOCK, DC .
CELL, 1992, 69 (01) :119-128
[19]   Reversible tumorigenesis by MYC in hematopoietic lineages [J].
Felsher, DW ;
Bishop, JM .
MOLECULAR CELL, 1999, 4 (02) :199-207
[20]   Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene [J].
Ferrara, N ;
CarverMoore, K ;
Chen, H ;
Dowd, M ;
Lu, L ;
OShea, KS ;
PowellBraxton, L ;
Hillan, KJ ;
Moore, MW .
NATURE, 1996, 380 (6573) :439-442