Bifurcations, stability, and monotonicity properties of a delayed neural network model

被引:205
作者
Olien, L
Belair, J
机构
[1] MCGILL UNIV,DEPT MATH & STAT,MONTREAL,PQ,CANADA
[2] MCGILL UNIV,CTR NONLINEAR DYNAM PHYSIOL & MED,MONTREAL,PQ,CANADA
[3] UNIV MONTREAL,DEPT MATH & STAT,MONTREAL,PQ H3C 3J7,CANADA
[4] UNIV MONTREAL,CTR RECH MATH,MONTREAL,PQ H3C 3J7,CANADA
来源
PHYSICA D | 1997年 / 102卷 / 3-4期
基金
加拿大自然科学与工程研究理事会;
关键词
neural networks; delay-differential equations; Hopf bifurcations;
D O I
10.1016/S0167-2789(96)00215-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A delay-differential equation modelling an artificial neural network with two neurons is investigated. A linear stability analysis provides parameter values yielding asymptotic stability of the stationary solutions: these can lose stability through either a pitchfork or a Hopf bifurcation, which is shown to be supercritical. At appropriate parameter values, an interaction takes place between the pitchfork and Hopf bifurcations. Conditions are also given for the set of initial conditions that converge to a stable stationary solution to be open and dense in the functional phase space. Analytic results are illustrated with numerical simulations.
引用
收藏
页码:349 / 363
页数:15
相关论文
共 22 条
[21]   MONOTONE SEMIFLOWS GENERATED BY FUNCTIONAL-DIFFERENTIAL EQUATIONS [J].
SMITH, H .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1987, 66 (03) :420-442
[22]  
Wiggins S., 1990, INTRO APPLIED NONLIN