Development of necrosis and activation of disease resistance in transgenic tobacco plants with severely reduced catalase levels

被引:161
作者
Takahashi, H
Chen, ZX
Du, H
Liu, YD
Klessig, DF
机构
[1] RUTGERS STATE UNIV,WAKSMAN INST,PISCATAWAY,NJ 08855
[2] RUTGERS STATE UNIV,DEPT MOL BIOL & BIOCHEM,PISCATAWAY,NJ 08855
关键词
D O I
10.1046/j.1365-313X.1997.11050993.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Numerous studies argue that salicylic acid (SA) is an important component of the plant signal transduction pathway(s) leading to disease resistance. The discovery that the SA-binding protein is a catalase, whose activity is blocked by SA, led to the proposal that one of SA's modes of action is to inhibit this H2O2-degrading enzyme and thus elevate H2O2 levels. To test this model, an attempt was made to mimic the action of SA by reducing the synthesis of catalase using antisense RNA technology. Analyses of transgenic tobacco plants that expressed the tobacco catalase 1 (cat1) or catalase 2 (cat2) gene in an antisense orientation indicate that there is no correlation between modest to high levels of reduction in catalase activity and activation of plant defenses such as pathogenesis-related (PR)-1 protein synthesis. However, three independent antisense catalase transgenic plants (ASCAT1 Nos 16, 17, and 28), which exhibited the most severe reduction in catalase activity (similar to 90% or more), developed chlorosis or necrosis on some of their lower leaves. These same leaves accumulated very high levels of PR-1 proteins and showed enhanced resistance to tobacco mosaic virus. Necrosis and elevated SA, which appear to result from severe depression of catalase levels, may be responsible for the induction of these defense responses.
引用
收藏
页码:993 / 1005
页数:13
相关论文
共 57 条
[21]   ARABIDOPSIS MUTANTS SIMULATING DISEASE RESISTANCE RESPONSE [J].
DIETRICH, RA ;
DELANEY, TP ;
UKNES, SJ ;
WARD, ER ;
RYALS, JA ;
DANGL, JL .
CELL, 1994, 77 (04) :565-577
[22]   INHIBITION OF ASCORBATE PEROXIDASE BY SALICYLIC-ACID AND 2,6-DICHLOROISONICOTINIC ACID, 2 INDUCERS OF PLANT DEFENSE RESPONSES [J].
DURNER, J ;
KLESSIG, DF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (24) :11312-11316
[23]   Salicylic acid is a modulator of tobacco and mammalian catalases [J].
Durner, J ;
Klessig, DF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (45) :28492-28501
[24]   REQUIREMENT OF SALICYLIC-ACID FOR THE INDUCTION OF SYSTEMIC ACQUIRED-RESISTANCE [J].
GAFFNEY, T ;
FRIEDRICH, L ;
VERNOOIJ, B ;
NEGROTTO, D ;
NYE, G ;
UKNES, S ;
WARD, E ;
KESSMANN, H ;
RYALS, J .
SCIENCE, 1993, 261 (5122) :754-756
[25]   Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat [J].
Gorlach, J ;
Volrath, S ;
KnaufBeiter, G ;
Hengy, G ;
Beckhove, U ;
Kogel, KH ;
Oostendorp, M ;
Staub, T ;
Ward, E ;
Kessmann, H ;
Ryals, J .
PLANT CELL, 1996, 8 (04) :629-643
[26]  
GREEN R, 1995, PLANT CELL, V7, P203, DOI 10.1105/tpc.7.2.203
[27]   PROGRAMMED CELL-DEATH IN PLANTS - A PATHOGEN-TRIGGERED RESPONSE ACTIVATED COORDINATELY WITH MULTIPLE DEFENSE FUNCTIONS [J].
GREENBERG, JT ;
GUO, AL ;
KLESSIG, DF ;
AUSUBEL, FM .
CELL, 1994, 77 (04) :551-563
[28]  
Hoffmann N, 1988, PLANT MOL BIOL MANUA, pA5 1
[29]   THE SALICYLIC-ACID SIGNAL IN PLANTS [J].
KLESSIG, DF ;
MALAMY, J .
PLANT MOLECULAR BIOLOGY, 1994, 26 (05) :1439-1458
[30]   CLEAVAGE OF STRUCTURAL PROTEINS DURING ASSEMBLY OF HEAD OF BACTERIOPHAGE-T4 [J].
LAEMMLI, UK .
NATURE, 1970, 227 (5259) :680-+